Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'discrete models':
Найдено статей: 78
  1. Фирсов А.А., Яранцев Д.А., Леонов С.Б., Иванов В.В.
    Численное моделирование горения этилена в сверхзвуковом потоке воздуха
    Компьютерные исследования и моделирование, 2017, т. 9, № 1, с. 75-86

    В представленной работе обсуждается возможность упрощенного трехмерного нестационарного моделирования процесса плазменно-стимулированного горения газообразного топлива в сверхзвуковом потоке воздуха. Расчеты проводились в программном комплексе FlowVision. В работе выполнен анализ геометрии эксперимента и сделан вывод о ее существенной трехмерности, связанной как с дискретностью подачи топлива в поток, так и с наличием локализованных плазменных образований. Предложен вариант упрощения расчетной геометрии, основанный на симметрии аэродинамического канала и периодичности пространственных неоднородностей. Выполнено тестирование модифицированной $k–\varepsilon$ модели турбулентности FlowVision (KEFV) в условиях сверхзвукового потока. В этих расчетах в области источников тепла и инжекции топлива использовалась подробная сетка без пристеночных функций, а на удаленных от ключевой области поверхностях пристеночные функции были включены. Это позволило существенно уменьшить количество ячеек расчетной сетки. Сложная задача моделирования воспламенения углеводородного топлива при воздействии плазмы была существенно упрощена путем представления плазменных образований как источников тепла и использования одной брутто-реакции для описания горения топлива. На базе геометрии аэродинамического стенда ИАДТ-50 ОИВТ РАН с помощью моделирования в программном комплексе ПК FlowVision проведены калибровка и параметрическая оптимизация подачи газообразного топлива в сверхзвуковой поток. Продемонстрировано хорошее совпадение экспериментальной и синтетической теневой картины потока при инжекции топлива. Проведено моделирование потока для геометрии камеры сгорания Т131 ЦАГИ с инжекцией топлива и генерацией плазмы. В результате моделирования для заданного набора параметров продемонстрировано воспламенение топлива, что совпало с результатами эксперимента. Отмечена важность адаптации расчетной сетки с повышением пространственного разрешения в области объемных источников тепла, моделирующих зону электрического разряда. Достигнуто удовлетворительное качественное совпадение распределений давления, полученных в моделировании и эксперименте.

    Firsov A.A., Yarantsev D.A., Leonov S.B., Ivanov V.V.
    Numerical simulation of ethylene combustion in supersonic air flow
    Computer Research and Modeling, 2017, v. 9, no. 1, pp. 75-86

    In the present paper, we discuss the possibility of a simplified three-dimensional unsteady simulation of plasma-assisted combustion of gaseous fuel in a supersonic airflow. Simulation was performed by using FlowVision CFD software. Analysis of experimental geometry show that it has essentially 3D nature that conditioned by the discrete fuel injection into the flow as well as by the presence of the localized plasma filaments. Study proposes a variant of modeling geometry simplification based on symmetry of the aerodynamic duct and periodicity of the spatial inhomogeneities. Testing of modified FlowVision $k–\varepsilon$ turbulence model named «KEFV» was performed for supersonic flow conditions. Based on that detailed grid without wall functions was used the field of heat and near fuel injection area and surfaces remote from the key area was modeled with using of wall functions, that allowed us to significantly reduce the number of cells of the computational grid. Two steps significantly simplified a complex problem of the hydrocarbon fuel ignition by means of plasma generation. First, plasma formations were simulated by volumetric heat sources and secondly, fuel combustion is reduced to one brutto reaction. Calibration and parametric optimization of the fuel injection into the supersonic flow for IADT-50 JIHT RAS wind tunnel is made by means of simulation using FlowVision CFD software. Study demonstrates a rather good agreement between the experimental schlieren photo of the flow with fuel injection and synthetical one. Modeling of the flow with fuel injection and plasma generation for the facility T131 TSAGI combustion chamber geometry demonstrates a combustion mode for the set of experimental parameters. Study emphasizes the importance of the computational mesh adaptation and spatial resolution increasing for the volumetric heat sources that model electric discharge area. A reasonable qualitative agreement between experimental pressure distribution and modeling one confirms the possibility of limited application of such simplified modeling for the combustion in high-speed flow.

    Просмотров за год: 8. Цитирований: 3 (РИНЦ).
  2. Бессонов Н.М., Бочаров Г.А., Бушнита А., Вольперт В.А.
    Гибридные модели в биомедицинских приложениях
    Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 287-309

    В статье представлен обзор недавних работ по гибридным дискретно-непрерывным моделям в динамике клеточных популяций. В этих моделях, широко используемых в биологическом моделировании, клетки рассматриваются как отдельные объекты, которые могут делиться, умирать, дифференцироваться и двигаться под воздействием внешних сил. В простейшем представлении клетки рассматриваются как мягкие сферы, их движение описывается вторым законом Ньютона для их центров. В более полном представлении могут учитываться геометрия и структура клеток. Судьба клеток определяется концентрациями внутриклеточных веществ и различных веществ во внеклеточном матриксе, таких как питательные вещества, гормоны, факторы роста. Внутриклеточные регуляторные сети описываются обыкновенными дифференциальными уравнениями, а внеклеточные концентрации — уравнениями в частных производных. Мы проиллюстрируем применение этого подхода некоторыми примерами, в том числе бактериальными филаметами и ростом раковойоп ухоли. Далее будут приведены более детальные исследования эритропоэза и иммунного ответа. Эритроциты произодятся в костном мозге в небольших структурах, называемых эритробластными островками. Каждыйо стровок образован центральным макрофагом, окруженным эритроидными предшественниками на разных стадиях зрелости. Их выбор между самообновлением, дифференцировкойи апоптозом определяется регуляцией ERK/Fas и фактором роста, производимым макрофагами. Нормальное функционирование эритропоэза может быть нарушено развитием множественной миеломы, злокачественного заболевания крови, которое приводит к разрушению эритробластических островков и к развитию анемии. Последняя часть работы посвящена применению гибридных моделей для изучения иммунного ответа и развития вируснойинф екции. Представлена двухмасштабная модель, включающая лимфатическийу зел и другие ткани организма, включая кровеносную систему.

    Bessonov N.M., Bocharov G.A., Bouchnita A., Volpert V.A.
    Hybrid models in biomedical applications
    Computer Research and Modeling, 2019, v. 11, no. 2, pp. 287-309

    The paper presents a review of recent developments of hybrid discrete-continuous models in cell population dynamics. Such models are widely used in the biological modelling. Cells are considered as individual objects which can divide, die by apoptosis, differentiate and move under external forces. In the simplest representation cells are considered as soft spheres, and their motion is described by Newton’s second law for their centers. In a more complete representation, cell geometry and structure can be taken into account. Cell fate is determined by concentrations of intra-cellular substances and by various substances in the extracellular matrix, such as nutrients, hormones, growth factors. Intra-cellular regulatory networks are described by ordinary differential equations while extracellular species by partial differential equations. We illustrate the application of this approach with some examples including bacteria filament and tumor growth. These examples are followed by more detailed studies of erythropoiesis and immune response. Erythrocytes are produced in the bone marrow in small cellular units called erythroblastic islands. Each island is formed by a central macrophage surrounded by erythroid progenitors in different stages of maturity. Their choice between self-renewal, differentiation and apoptosis is determined by the ERK/Fas regulation and by a growth factor produced by the macrophage. Normal functioning of erythropoiesis can be compromised by the development of multiple myeloma, a malignant blood disorder which leads to a destruction of erythroblastic islands and to sever anemia. The last part of the work is devoted to the applications of hybrid models to study immune response and the development of viral infection. A two-scale model describing processes in a lymph node and other organs including the blood compartment is presented.

    Просмотров за год: 25.
  3. Муратов М.В., Петров И.Б.
    Application of mathematical fracture models to simulation of exploration seismology problems by the grid-characteristic method
    Компьютерные исследования и моделирование, 2019, т. 11, № 6, с. 1077-1082

    In real problems of exploration seismology we deal with a heterogeneity of the nature of elastic waves interaction with the surface of a fracture by the propagation through it. The fracture is a complex heterogeneous structure. In some locations the surfaces of fractures are placed some distance apart and are separated by filling fluid or emptiness, in some places we can observe the gluing of surfaces, when under the action of pressure forces the fracture surfaces are closely adjoined to each other. In addition, fractures can be classified by the nature of saturation: fluid or gas. Obviously, for such a large variety in the structure of fractures, one cannot use only one model that satisfies all cases.

    This article is concerned with description of developed mathematical fracture models which can be used for numerical solution of exploration seismology problems using the grid-characteristic method on unstructured triangular (in 2D-case) and tetrahedral (in 3D-case) meshes. The basis of the developed models is the concept of an infinitely thin fracture, whose aperture does not influence the wave processes in the fracture area. These fractures are represented by bound areas and contact boundaries with different conditions on contact and boundary surfaces. Such an approach significantly reduces the consumption of computer resources since there is no need to define the mesh inside the fracture. On the other side, it allows the fractures to be given discretely in the integration domain, therefore, one can observe qualitatively new effects, such as formation of diffractive waves and multiphase wave front due to multiple reflections between the surfaces of neighbor fractures, which cannot be observed by using effective fracture models actively used in computational seismology.

    The computational modeling of seismic waves propagation through layers of mesofractures was produced using developed fracture models. The results were compared with the results of physical modeling in problems in the same statements.

    Muratov M.V., Petrov I.B.
    Application of mathematical fracture models to simulation of exploration seismology problems by the grid-characteristic method
    Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1077-1082

    In real problems of exploration seismology we deal with a heterogeneity of the nature of elastic waves interaction with the surface of a fracture by the propagation through it. The fracture is a complex heterogeneous structure. In some locations the surfaces of fractures are placed some distance apart and are separated by filling fluid or emptiness, in some places we can observe the gluing of surfaces, when under the action of pressure forces the fracture surfaces are closely adjoined to each other. In addition, fractures can be classified by the nature of saturation: fluid or gas. Obviously, for such a large variety in the structure of fractures, one cannot use only one model that satisfies all cases.

    This article is concerned with description of developed mathematical fracture models which can be used for numerical solution of exploration seismology problems using the grid-characteristic method on unstructured triangular (in 2D-case) and tetrahedral (in 3D-case) meshes. The basis of the developed models is the concept of an infinitely thin fracture, whose aperture does not influence the wave processes in the fracture area. These fractures are represented by bound areas and contact boundaries with different conditions on contact and boundary surfaces. Such an approach significantly reduces the consumption of computer resources since there is no need to define the mesh inside the fracture. On the other side, it allows the fractures to be given discretely in the integration domain, therefore, one can observe qualitatively new effects, such as formation of diffractive waves and multiphase wave front due to multiple reflections between the surfaces of neighbor fractures, which cannot be observed by using effective fracture models actively used in computational seismology.

    The computational modeling of seismic waves propagation through layers of mesofractures was produced using developed fracture models. The results were compared with the results of physical modeling in problems in the same statements.

  4. Степин Ю.П., Леонов Д.Г., Папилина Т.М., Степанкина О.А.
    Системное моделирование, оценка и оптимизация рисков функционирования распределенных компьютерных систем
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1349-1359

    В статье рассматривается проблема надежности эксплуатации открытой интеграционной платформы, обеспечивающей взаимодействие различных программных комплексов моделирования режимов транспорта газа, с учетом предоставления доступа к ним, в том числе через тонких клиентов, по принципу «программное обеспечение как услуга». Математически описаны функционирование, надежность хранения, передачи информации и реализуемость вычислительного процесса системы, что является необходимым для обеспечения работы автоматизированной системы диспетчерского управления транспортом нефти и газа. Представлено системное решение вопросов моделирования работы интеграционной платформы и тонких клиентов в условиях неопределенности и риска на базе метода динамики средних теории марковских случайных процессов. Рассматривается стадия стабильной работы — стационарный режим работы цепи Маркова с непрерывным временем и дискретными состояниями, которая описывается системами линейных алгебраический уравнений Колмогорова–Чепмена, записанных относительно средних численностей (математических ожиданий) состояний объектов исследования. Объектами исследования являются как элементы системы, присутствующие в большом количестве (тонкие клиенты и вычислительные модули), так и единичные (сервер, сетевой менеджер (брокер сообщений), менеджер технологических схем). В совокупности они представляют собой взаимодействующие Марковские случайные процессы, взаимодействие которых определяется тем, что интенсивности переходов в одной группе элементов зависят от средних численностей других групп элементов.

    Через средние численности состояний объектов и интенсивностей их переходов из состояния в состояние предлагается многокритериальная дисперсионная модель оценки риска (как в широком, так и узком смысле, в соответствии со стандартом МЭК). Риск реализации каждого состояния параметров системы вычисляется как среднеквадратическое отклонение оцениваемого параметра системы объектов (в данном случае — средние численности и вероятности состояний элементов открытой интеграционной платформы и облака) от их среднего значения. На основании определенной дисперсионной модели риска функционирования элементов системы вводятся модели критериев оптимальности и рисков функционирования системы в целом. В частности, для тонкого клиента рассчитываются риск недополучения выгоды от подготовки и обработки запроса, суммарный риск потерь, связанный только с непроизводительными состояниями элемента, суммарный риск всех потерь от всех состояний системы. Для полученной многокритериальной задачи оценки рисков предлагаются модели (схемы компромисса) выбора оптимальной стратегии эксплуатации.

    Stepin Y.P., Leonov D.G., Papilina T.M., Stepankina O.A.
    System modeling, risks evaluation and optimization of a distributed computer system
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1349-1359

    The article deals with the problem of a distributed system operation reliability. The system core is an open integration platform that provides interaction of varied software for modeling gas transportation. Some of them provide an access through thin clients on the cloud technology “software as a service”. Mathematical models of operation, transmission and computing are to ensure the operation of an automated dispatching system for oil and gas transportation. The paper presents a system solution based on the theory of Markov random processes and considers the stable operation stage. The stationary operation mode of the Markov chain with continuous time and discrete states is described by a system of Chapman–Kolmogorov equations with respect to the average numbers (mathematical expectations) of the objects in certain states. The objects of research are both system elements that are present in a large number – thin clients and computing modules, and individual ones – a server, a network manager (message broker). Together, they are interacting Markov random processes. The interaction is determined by the fact that the transition probabilities in one group of elements depend on the average numbers of other elements groups.

    The authors propose a multi-criteria dispersion model of risk assessment for such systems (both in the broad and narrow sense, in accordance with the IEC standard). The risk is the standard deviation of estimated object parameter from its average value. The dispersion risk model makes possible to define optimality criteria and whole system functioning risks. In particular, for a thin client, the following is calculated: the loss profit risk, the total risk of losses due to non-productive element states, and the total risk of all system states losses.

    Finally the paper proposes compromise schemes for solving the multi-criteria problem of choosing the optimal operation strategy based on the selected set of compromise criteria.

  5. Захаров П.В.
    Эффект нелинейной супратрансмиссии в дискретных структурах: обзор
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 599-617

    В данной работе приводится обзор исследований, посвященных нелинейной супратрансмиссии и сопутствую- щим явлениям. Данный эффект заключается в передаче энергии на частотах, не поддерживаемых рассматриваемыми системами. Супратрансмиссия не зависит от интегрируемости системы, устойчива к демпфированию и различным классамгр аничных условий. Кроме того, нелинейная дискретная среда при некоторых общих условиях, накладываемых на структуру, может создавать неустойчивость, обусловленную внешним периодическим воздействием. Она является порождающимпроце ссом, лежащим в основе нелинейной супратрансмиссии. Это возможно, когда система поддерживает нелинейные моды различной природы, в частности дискретные бризеры. Тогда энергия проникает в систему, как только амплитуда внешнего гармонического возбуждения превышает максимальную амплитуду статического бризера той же частоты.

    Эффект нелинейной супратрансмиссии является важным свойством многих дискретных структур. Необходимыми условиями для его существования являются дискретность и нелинейность среды. Его проявление в системах различной природы говорит о его фундаментальности и значимости. В данном обзоре рассмотрены основные работы, затрагивающие вопрос нелинейной супратрансмисии в различных системах, преимущественно модельных.

    Многими авторскими коллективами ведутся исследования данного эффекта. В первую очередь это модели, описываемые дискретными уравнениями, в том числе sin-Гордона и дискретным нелинейным уравнением Шрёдингера. При этом эффект не является исключительно модельным и проявляет себя в натурных экспериментах в электрических цепях, в нелинейных цепочках осцилляторов, а также в метастабильных модульных метаструктурах. Происходит поэтапное усложнение моделей, что приводит к более глубокому пониманию явления супратрансмиссии, а переход к разупорядоченным и с элементами хаоса структурам позволяет говорить о более тонком проявлении данного эффекта. Численные асимптотические подходы позволяют исследовать нелинейную супратрансмиссию в сложных неинтегрируемых системах. Усложнение всевозможных осцилляторов, как физических, так и электрических, актуально для различных реальных устройств, базирующихся на подобных системах. В том числе в области нанообъектов и транспорта энергии в них посредством рассматриваемого эффекта. К таким системам относятся молекулярные, кристаллические кластеры и наноустройства. В заключении работы приводятся основные тенденции исследований нелинейной супратрансмиссии.

    Zakharov P.V.
    The effect of nonlinear supratransmission in discrete structures: a review
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 599-617

    This paper provides an overview of studies on nonlinear supratransmission and related phenomena. This effect consists in the transfer of energy at frequencies not supported by the systems under consideration. The supratransmission does not depend on the integrability of the system, it is resistant to damping and various classes of boundary conditions. In addition, a nonlinear discrete medium, under certain general conditions imposed on the structure, can create instability due to external periodic influence. This instability is the generative process underlying the nonlinear supratransmission. This is possible when the system supports nonlinear modes of various nature, in particular, discrete breathers. Then the energy penetrates into the system as soon as the amplitude of the external harmonic excitation exceeds the maximum amplitude of the static breather of the same frequency.

    The effect of nonlinear supratransmission is an important property of many discrete structures. A necessary condition for its existence is the discreteness and nonlinearity of the medium. Its manifestation in systems of various nature speaks of its fundamentality and significance. This review considers the main works that touch upon the issue of nonlinear supratransmission in various systems, mainly model ones.

    Many teams of authors are studying this effect. First of all, these are models described by discrete equations, including sin-Gordon and the discrete Schr¨odinger equation. At the same time, the effect is not exclusively model and manifests itself in full-scale experiments in electrical circuits, in nonlinear chains of oscillators, as well as in metastable modular metastructures. There is a gradual complication of models, which leads to a deeper understanding of the phenomenon of supratransmission, and the transition to disordered structures and those with elements of chaos structures allows us to talk about a more subtle manifestation of this effect. Numerical asymptotic approaches make it possible to study nonlinear supratransmission in complex nonintegrable systems. The complication of all kinds of oscillators, both physical and electrical, is relevant for various real devices based on such systems, in particular, in the field of nano-objects and energy transport in them through the considered effect. Such systems include molecular and crystalline clusters and nanodevices. In the conclusion of the paper, the main trends in the research of nonlinear supratransmission are given.

  6. Подлипнова И.В., Дорн Ю.В., Склонин И.А.
    Облачная интерпретация энтропийной модели расчета матрицы корреспонденций
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 89-103

    С ростом населения городов сильнее ощущается необходимость планирования развития транспортной инфраструктуры. Для этой цели создаются пакеты транспортного моделирования, которые обычно содержат набор задач выпуклой оптимизации, итеративное решение которых приводит к искомому равновесному распределению потоков по путям. Одно из направлений развития транспортного моделирования — это построение более точных обобщенных моделей, которые учитывают различные типы пассажиров, их цели поездок, а также специфику личных и общественных средств передвижения, которыми могут воспользоваться агенты. Другим не менее важным направлением является улучшение эффективности производимых вычислений, так как в связи с большой размерностью современных транспортных сетей поиск численного решения задачи равновесного распределения потоков по путям является довольно затратным. Итеративность всего процесса решения лишь усугубляет это. Одним из подходов, ведущим к уменьшению числа производимых вычислений, и является построение согласованных моделей, которые позволяют объединить блоки 4-стадийной модели в единую задачу оптимизации. Это позволяет исключить итеративную прогонку блоков, перейдя от решения отдельной задачи оптимизации на каждом этапе к некоторой общей задаче. В ранних работах было доказано, что такие подходы дают эквивалентные решения. Тем не менее стоит рассмотреть обоснованность и интерпретируемость этих методов. Целью данной статьи является обоснование единой задачи, объединяющей в себе как расчет матрицы корреспонденций, так и модальный выбор, для обобщенного случая, когда в транспортной сети присутствуют различные слои спроса, типы агентов и классы транспортных средств. В статье приводятся возможные интерпретации для калибровочных параметров, применяемых в задаче, а также для двойственных множителей, ассоциированных с балансовыми ограничениями. Авторы статьи также показывают возможность объединения рассматриваемой задачи с блоком определения загрузки сети в единую задачу оптимизации.

    Podlipnova I.V., Dorn Y.V., Sklonin I.A.
    Cloud interpretation of the entropy model for calculating the trip matrix
    Computer Research and Modeling, 2024, v. 16, no. 1, pp. 89-103

    As the population of cities grows, the need to plan for the development of transport infrastructure becomes more acute. For this purpose, transport modeling packages are created. These packages usually contain a set of convex optimization problems, the iterative solution of which leads to the desired equilibrium distribution of flows along the paths. One of the directions for the development of transport modeling is the construction of more accurate generalized models that take into account different types of passengers, their travel purposes, as well as the specifics of personal and public modes of transport that agents can use. Another important direction of transport models development is to improve the efficiency of the calculations performed. Since, due to the large dimension of modern transport networks, the search for a numerical solution to the problem of equilibrium distribution of flows along the paths is quite expensive. The iterative nature of the entire solution process only makes this worse. One of the approaches leading to a reduction in the number of calculations performed is the construction of consistent models that allow to combine the blocks of a 4-stage model into a single optimization problem. This makes it possible to eliminate the iterative running of blocks, moving from solving a separate optimization problem at each stage to some general problem. Early work has proven that such approaches provide equivalent solutions. However, it is worth considering the validity and interpretability of these methods. The purpose of this article is to substantiate a single problem, that combines both the calculation of the trip matrix and the modal choice, for the generalized case when there are different layers of demand, types of agents and classes of vehicles in the transport network. The article provides possible interpretations for the gauge parameters used in the problem, as well as for the dual factors associated with the balance constraints. The authors of the article also show the possibility of combining the considered problem with a block for determining network load into a single optimization problem.

  7. Потапов И.И., Потапов Д.И.
    Модель установившегося течения реки в поперечном сечении изогнутого русла
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1163-1178

    Моделирование русловых процессов при исследовании береговых деформаций русла требует вычисления параметров гидродинамического потока, учитывающих существование вторичных поперечных течений, формирующихся на закруглении русла. Трехмерное моделирование таких процессов на текущий момент возможно только для небольших модельных каналов, для реальных речных потоков необходимы модели пониженной размерности. При этом редукция задачи от трехмерной модели движения речного потока к двумерной модели потока в плоскости створа канала предполагает, что рассматриваемый гидродинамический поток является квазистационарным, и для него выполнены гипотезы об асимптотическом поведении потока по потоковой координате створа. С учетом данных ограничений в работе сформулирована математическая модель задачи о движении стационарного турбулентного спокойного речного потока в створе канала. Задача сформулирована в смешанной постановке скорости — «вихрь – функция тока». В качестве дополнительных условий для редукции задачи требуется задание граничных условий на свободной поверхности потока для поля скорости, определяемого в нормальном и касательном направлении к оси створа. Предполагается, что значения данных скоростей должны быть определены из решения вспомогательных задач или получены из данных натурных или экспериментальных измерений.

    Для решения сформулированной задачи используется метод конечных элементов в формулировке Петрова – Галёркина. Получен дискретный аналог задачи и предложен алгоритм ее решения. Выполненные численные исследования показали в целом хорошую согласованность полученных решений при их сравнении с известными экспериментальными данными.

    Полученные погрешности авторы связывают с необходимостью более точного определения циркуляционного поля скоростей в створе потока путем подбора и калибровки более подходящей модели вычисления турбулентной вязкости и граничных условий на свободной границе створа.

    Potapov I.I., Potapov D.I.
    Model of steady river flow in the cross section of a curved channel
    Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1163-1178

    Modeling of channel processes in the study of coastal channel deformations requires the calculation of hydrodynamic flow parameters that take into account the existence of secondary transverse currents formed at channel curvature. Three-dimensional modeling of such processes is currently possible only for small model channels; for real river flows, reduced-dimensional models are needed. At the same time, the reduction of the problem from a three-dimensional model of the river flow movement to a two-dimensional flow model in the cross-section assumes that the hydrodynamic flow under consideration is quasi-stationary and the hypotheses about the asymptotic behavior of the flow along the flow coordinate of the cross-section are fulfilled for it. Taking into account these restrictions, a mathematical model of the problem of the a stationary turbulent calm river flow movement in a channel cross-section is formulated. The problem is formulated in a mixed formulation of velocity — “vortex – stream function”. As additional conditions for problem reducing, it is necessary to specify boundary conditions on the flow free surface for the velocity field, determined in the normal and tangential direction to the cross-section axis. It is assumed that the values of these velocities should be determined from the solution of auxiliary problems or obtained from field or experimental measurement data.

    To solve the formulated problem, the finite element method in the Petrov – Galerkin formulation is used. Discrete analogue of the problem is obtained and an algorithm for solving it is proposed. Numerical studies have shown that, in general, the results obtained are in good agreement with known experimental data. The authors associate the obtained errors with the need to more accurately determine the circulation velocities field at crosssection of the flow by selecting and calibrating a more appropriate model for calculating turbulent viscosity and boundary conditions at the free boundary of the cross-section.

  8. Аристов А.О.
    Квазиклеточные сети и их приложения в задачах моделирования посетителей объектов массового пребывания людей
    Компьютерные исследования и моделирование, 2014, т. 6, № 2, с. 285-294

    Рассмотрены вопросы предметной интерпретации квазиклеточных сетей в задачах моделирования потоков людей на различных объектах их массового пребывания. Квазиклеточные сети представляют собой фундаментальные дискретные структуры, не имеющие сигнатуры. Предлагаемый подход позволяет в рамках одной дискретной структуры реализовать микро и макромоделирование потоков людей, а также визуализацию данных. Отдельно рассмотрены интерпретации многосортности потоков в квазиклеточных сетях для случая фанатов на стадионах, а также распространения огня и отравляющих веществ на объектах массового пребывания людей. Подход соответствует указаниям МЧС России от 03.02.2009 г. № 7-3-113.

    Aristov A.O.
    Quasicellular networks and their application for simulation of visitor flow in public spaces
    Computer Research and Modeling, 2014, v. 6, no. 2, pp. 285-294

    Problems of application of quasicellular networks for simulation of flows of visitors in different public spaces are considered. Quasicellular networks are basic discrete structures without signature. Proposed approach may be used to create simulations on micro and macro levels. It also may be used for creating geometrical models. There are also multi-flow systems for simulation of sports fans in a sports arena, propagation of fire and poison in public spaces. This approach satisfies the requirements of MOE of Russia № 7-3-113.

    Просмотров за год: 2. Цитирований: 7 (РИНЦ).
  9. Прядеин Р.Б., Степанцов М.Е.
    Об одном подходе к имитационному моделированию спортивной игры с дискретным временем
    Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 271-279

    В статье предлагается подход к имитационному моделированию спортивной игры, состоящей из дискретного набора отдельных поединков, основанный на рассмотрении матча как случайного процесса, в общем случае не являющегося марковским. Первоначально ход игры рассматривается как марковский процесс, на основании чего строятся рекуррентные соотношения между вероятностями достижения состояний теннисного матча, а также между вторичными показателями, такими как математическое ожидание и дисперсия числа розыгрышей, остающихся до завершения гейма. Затем, в рамках имитационной системы, моделирующей матч, мы позволяем произвольное изменение вероятностей исходов составляющих матч поединков, в том числе и в зависимости от результатов предыдущих. Данная работа посвящена модификации модели, ранее предлагавшейся авторами для спортивных игр с непрерывным временем.

    Предлагаемый подход позволяет оценивать не только вероятность того или иного исхода матча, но и вероятности достижения каждого из возможных промежуточных результатов, а также вторичные показатели игры, такие как число таких отдельных поединков, потребовавшееся для завершения матча. Подробно изложено построение имитационной системы для гейма теннисного матча, по аналогии с которой осуществляется моделирование сета и всего матча. Доказано утверждение относительно справедливости правил подачи в теннисе, понимаемой в смысле отсутствия влиянии права первой подачи на исход матча. В качестве примера проведены моделирование и анализ планировавшейся, но не состоявшейся игры одного из турниров серии ATP. Получены наиболее вероятные промежуточные и окончательные результаты матча для трех сценариев хода игры.

    Основным результатом данной работы является предлагаемая методика имитационного моделирования матча, применимая не только к теннису, но и к другим видам спортивных игр с дискретным временем.

    Priadein R.B., Stepantsov M.Y.
    On a possible approach to a sport game with discrete time simulation
    Computer Research and Modeling, 2017, v. 9, no. 2, pp. 271-279

    The paper proposes an approach to simulation of a sport game, consisting of a discrete set of separate competitions. According to this approach, such a competition is considered as a random processes, generally — a non-Markov’s one. At first we treat the flow of the game as a Markov’s process, obtaining recursive relationship between the probabilities of achieving certain states of score in a tennis match, as well as secondary indicators of the game, such as expectation and variance of the number of serves to finish the game. Then we use a simulation system, modeling the match, to allow an arbitrary change of the probabilities of the outcomes in the competitions that compose the match. We, for instance, allow the probabilities to depend on the results of previous competitions. Therefore, this paper deals with a modification of the model, previously proposed by the authors for sports games with continuous time.

    The proposed approach allows to evaluate not only the probability of the final outcome of the match, but also the probabilities of reaching each of the possible intermediate results, as well as secondary indicators of the game, such as the number of separate competitions it takes to finish the match. The paper includes a detailed description of the construction of a simulation system for a game of a tennis match. Then we consider simulating a set and the whole tennis match by analogy. We show some statements concerning fairness of tennis serving rules, understood as independence of the outcome of a competition on the right to serve first. We perform simulation of a cancelled ATP series match, obtaining its most probable intermediate and final outcomes for three different possible variants of the course of the match.

    The main result of this paper is the developed method of simulation of the match, applicable not only to tennis, but also to other types of sports games with discrete time.

    Просмотров за год: 9.
  10. Коваленко С.Ю., Юсубалиева Г.М.
    Задача выживаемости для математической модели терапии глиомы с учетом гематоэнцефалического барьера
    Компьютерные исследования и моделирование, 2018, т. 10, № 1, с. 113-123

    В статье предлагается математическая модель терапии глиомы с учетом гематоэнцефалического барьера, радиотерапии и терапии антителами. Проведена оценка параметров по экспериментальным данным, а также оценка влияния значений параметров на эффективность лечения и прогноз болезни. Исследованы возможные варианты последовательного применения радиотерапии и воздействия антител. Комбинированное применение радиотерапии с внутривенным введением $mab$ $Cx43$ приводит к потенцированию терапевтического эффекта при глиоме. Радиотерапия должна предшествовать химиотерапии, поскольку радиовоздействие уменьшает барьерную функцию эндотелиальных клеток. Эндотелиальные клетки сосудовмоз га плотно прилегают друг к другу. Между их стенками образуются так называемые плотные контакты, роль которых во беспечении ГЭБ состоит в том, что они предотвращают проникновение в ткань мозга различных нежелательных веществ из кровеносного русла. Плотные контакты между эндотелиальными клетками блокируют межклеточный пассивный транспорт.

    Математическая модель состоит из непрерывной части и дискретной. Экспериментальные данные объема глиомы показывают следующую интересную динамику: после прекращения радиовоздействия рост опухоли не возобновляется сразу же, а существует некоторый промежуток времени, в течение которого глиома не растет. Клетки глиомы разделены на две группы. Первая группа — живые клетки, делящиеся с максимально возможной скоростью. Вторая группа — клетки, пострадавшие от радиации. В качестве показателя здоровья системы гематоэнцефалического барьера выбрано отношение количества клеток ГЭБ вт екущий момент к количеству клеток всо стоянии покоя, то есть всре днем здоровом состоянии.

    Непрерывная часть модели включает в себя описание деления обоих типов клеток глиомы, восстановления клеток ГЭБ, а также динамику лекарственного средства. Уменьшение количества хорошо функционирующих клеток ГЭБ облегчает проникновение лекарственного средства к клеткам мозга, то есть усиливает действие лекарства. При этом скорость деления клеток глиомы не увеличивается, поскольку ограничена не дефицитом питательных веществ, доступных клеткам, а внутренними механизмами клетки. Дискретная часть математической модели включает в себя оператор радиовоздействия, который применяется к показателю ГЭБ и к глиомным клеткам.

    В рамках математической модели лечения раковой опухоли (глиомы) решается задача оптимального управления с фазовыми ограничениями. Состояние пациента описывается двумя переменными: объемом опухоли и состоянием ГЭБ. Фазовые ограничения очерчивают некоторую область в пространстве этих показателей, которую мы называем областью выживаемости. Наша задача заключается в поиске таких стратегий лечения, которые минимизируют время лечения, максимизируют время отдыха пациента и при этом позволяют показателям состояния не выходить за разрешенные пределы. Поскольку задача выживаемости состоит в максимизации времени жизни пациента, то ищутся именно такие стратегии лечения, которые возвращают показатели в исходное положение (и мы видим на графиках периодические траектории). Периодические траектории говорят о том, что смертельно опасная болезнь переведена враз ряд хронических.

    Kovalenko S.Yu., Yusubalieva G.M.
    Survival task for the mathematical model of glioma therapy with blood-brain barrier
    Computer Research and Modeling, 2018, v. 10, no. 1, pp. 113-123

    The paper proposes a mathematical model for the therapy of glioma, taking into account the blood-brain barrier, radiotherapy and antibody therapy. The parameters were estimated from experimental data and the evaluation of the effect of parameter values on the effectiveness of treatment and the prognosis of the disease were obtained. The possible variants of sequential use of radiotherapy and the effect of antibodies have been explored. The combined use of radiotherapy with intravenous administration of $mab$ $Cx43$ leads to a potentiation of the therapeutic effect in glioma.

    Radiotherapy must precede chemotherapy, as radio exposure reduces the barrier function of endothelial cells. Endothelial cells of the brain vessels fit tightly to each other. Between their walls are formed so-called tight contacts, whose role in the provision of BBB is that they prevent the penetration into the brain tissue of various undesirable substances from the bloodstream. Dense contacts between endothelial cells block the intercellular passive transport.

    The mathematical model consists of a continuous part and a discrete one. Experimental data on the volume of glioma show the following interesting dynamics: after cessation of radio exposure, tumor growth does not resume immediately, but there is some time interval during which glioma does not grow. Glioma cells are divided into two groups. The first group is living cells that divide as fast as possible. The second group is cells affected by radiation. As a measure of the health of the blood-brain barrier system, the ratios of the number of BBB cells at the current moment to the number of cells at rest, that is, on average healthy state, are chosen.

    The continuous part of the model includes a description of the division of both types of glioma cells, the recovery of BBB cells, and the dynamics of the drug. Reducing the number of well-functioning BBB cells facilitates the penetration of the drug to brain cells, that is, enhances the action of the drug. At the same time, the rate of division of glioma cells does not increase, since it is limited not by the deficiency of nutrients available to cells, but by the internal mechanisms of the cell. The discrete part of the mathematical model includes the operator of radio interaction, which is applied to the indicator of BBB and to glial cells.

    Within the framework of the mathematical model of treatment of a cancer tumor (glioma), the problem of optimal control with phase constraints is solved. The patient’s condition is described by two variables: the volume of the tumor and the condition of the BBB. The phase constraints delineate a certain area in the space of these indicators, which we call the survival area. Our task is to find such treatment strategies that minimize the time of treatment, maximize the patient’s rest time, and at the same time allow state indicators not to exceed the permitted limits. Since the task of survival is to maximize the patient’s lifespan, it is precisely such treatment strategies that return the indicators to their original position (and we see periodic trajectories on the graphs). Periodic trajectories indicate that the deadly disease is translated into a chronic one.

    Просмотров за год: 14.
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.