Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'destruction':
Найдено статей: 30
  1. Фаворская А.В.
    Исследование свойств материала пластины лазерным ультразвуком при помощи анализа кратных волн
    Компьютерные исследования и моделирование, 2019, т. 11, № 4, с. 653-673

    Ультразвуковое исследование свойств материалов является прецизионным методом определения их упругих и прочностных свойств в связи с маленькой по сравнению с толщиной пластины длиной волны, образующейся в материале после воздействия лазерным пучком. В данной работе подробно рассмотрены волновые процессы, возникающие в ходе проведения этих измерений. Показано, что полноволновое численное моделирование позволяет детально изучать типы волн, геометрические характеристики их профиля, скорость прихода волн в различные точки, выявлять типы волн, измерения по которым оптимальны для исследований образца с заданными материалом и формой, разрабатывать методики измерений.

    Для осуществления полноволнового моделирования в данной работе был применен сеточно-характеристический метод на структурированных сетках и решалась гиперболическая система уравнений, описывающая распространение упругих волн в материале рассматриваемой пластины конечной толщины на конкретном примере отношения толщины к ширине 1:10.

    Для моделирования упругого фронта, возникшего в пластине от воздействия лазерного пучка, предложена соответствующая постановка задачи. Выполнено сравнение возникающих при ее использовании волновых эффектов со случаем точечного источника и с данными физических экспериментов о распространении лазерного ультразвука в металлических пластинах.

    Проведено исследование, на основании которого были выявлены характерные геометрические особенности рассматриваемых волновых процессов. Исследованы основные типы упругих волн, возникающие в процессе воздействия лазерного пучка, проанализирована возможность их использования для исследования свойств материалов и предложен метод, основанный на анализе кратных волн. Проведено тестирование предложенного метода по изучению свойств пластины при помощи кратных волн на синтетических данных, показавшее хорошие результаты.

    Следует отметить, что большая часть исследований кратных волн направлена на разработку методов их подавления. Кратные волны не используются для обработки результатов ультразвуковых исследований в связи со сложностью их выявления в регистрируемых данных физического эксперимента.

    За счет применения полноволнового моделирования и анализа пространственных динамических волновых процессов в данной работе кратные волны рассмотрены подробно и предложено деление материалов на три класса, позволяющее использовать кратные волны для получения информации о материале пластины.

    Основными результатами работы являются разработанные постановки задачи для численного моделирования исследования пластин конечной толщины лазерным ультразвуком; выявленные особенности волновых явлений, возникающих в пластинах конечной толщины; разработанная методика исследования свойств пластины на основе кратных волн; разработанная классификация материалов.

    Результаты исследований, приведенные в настоящей работе, могут быть интересны для разработок не только в области ультразвуковых исследований материалов, но и в области сейсмической разведки земных недр, так как предложенный подход может быть расширен на более сложные случаи гетерогенных сред и применен в геофизике.

    Favorskaya A.V.
    Investigation the material properties of a plate by laser ultrasound using the analysis of multiple waves
    Computer Research and Modeling, 2019, v. 11, no. 4, pp. 653-673

    Ultrasound examination of material properties is a precision method for determining their elastic and strength properties in connection with the small wavelength formed in the material after impact of a laser beam. In this paper, the wave processes arising during these measurements are considered in detail. It is shown that full-wave numerical modeling allows us to study in detail the types of waves, topological characteristics of their profile, speed of arrival of waves at various points, identification the types of waves whose measurements are most optimal for examining a sample made of a specific material of a particular shape, and to develop measurement procedures.

    To carry out full-wave modeling, a grid-characteristic method on structured grids was used in this work and a hyperbolic system of equations that describes the propagation of elastic waves in the material of the thin plate under consideration on a specific example of a ratio of thickness to width of 1:10 was solved.

    To simulate an elastic front that arose in the plate due to a laser beam, a model of the corresponding initial conditions was proposed. A comparison of the wave effects that arise during its use in the case of a point source and with the data of physical experiments on the propagation of laser ultrasound in metal plates was made.

    A study was made on the basis of which the characteristic topological features of the wave processes under consideration were identified and revealed. The main types of elastic waves arising due to a laser beam are investigated, the possibility of their use for studying the properties of materials is analyzed. A method based on the analysis of multiple waves is proposed. The proposed method for studying the properties of a plate with the help of multiple waves on synthetic data was tested, and it showed good results.

    It should be noted that most of the studies of multiple waves are aimed at developing methods for their suppression. Multiple waves are not used to process the results of ultrasound studies due to the complexity of their detection in the recorded data of a physical experiment.

    Due to the use of full wave modeling and analysis of spatial dynamic wave processes, multiple waves are considered in detail in this work and it is proposed to divide materials into three classes, which allows using multiple waves to obtain information about the material of the plate.

    The main results of the work are the developed problem statements for the numerical simulation of the study of plates of a finite thickness by laser ultrasound; the revealed features of the wave phenomena arising in plates of a finite thickness; the developed method for studying the properties of the plate on the basis of multiple waves; the developed classification of materials.

    The results of the studies presented in this paper may be of interest not only for developments in the field of ultrasonic non-destructive testing, but also in the field of seismic exploration of the earth's interior, since the proposed approach can be extended to more complex cases of heterogeneous media and applied in geophysics.

    Просмотров за год: 3.
  2. Михеев П.В., Горынин Г.Л., Борисова Л.Р.
    Модифицированная модель влияния концентрации напряжений вблизи разорванного волокна на прочность высокопрочных композитов при растяжении (MLLS-6)
    Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 559-573

    В статье предложена модель для оценки потенциальной прочности композиционного материала на основе современных волокон, разрушающихся хрупко.

    Моделируются материалы, состоящие из параллельных цилиндрических волокон, которые квазистатически растягиваются в одном направлении. Предполагается, что в выборке не меньше 100 штук, что соответствует практически значимым случаям. Известно, что волокна имеют разброс предельной деформации в выборке и разрушаются не одновременно. Обычно разброс их свойств описывается распределением Вейбулла–Гнеденко. Для моделирования прочности композита используется модель накопления разрывов волокон. Предполагается, что волокна, объединенные матрицей, дробятся до удвоенной неэффективной длины — расстояния, на котором возрастают напряжения от торца разорванного волокна до среднего. Однако такая модель сильно завышает прогноз прочности композитов с хрупкими волокнами. Например, так разрушаются углеродные и стеклянные волокна.

    В ряде случаев ранее делались попытки учесть концентрацию напряжений около разорванного волокна (модель Хеджепеста, модель Ермоленко, сдвиговой анализ), однако такие модели требовали или очень много исходных данных или не совпадали с экспериментом. Кроме того, такие модели идеализировали упаковку волокон в композите до регулярной гексагональной упаковки.

    В модели объединены подход сдвигового анализа к распределению напряжений около разрушенного волокна и статистический подход прочности волокон на основе распределения Вейбулла–Гнеденко, при этом введен ряд предположений, упрощающих расчет без потери точности.

    Предполагается, что перенапряжение на соседнем волокне увеличивает вероятность его разрушения в соответствии с распределением Вейбулла и число таких волокон с повышенной вероятностью разрушения прямо связано с числом уже разрушенных до этого. Все исходные данные могут быть получены из простых экспериментов. Показано, что учет перераспределения только на ближайшие волокна дает точный прогноз.

    Это позволило провести полный расчет прочности композита. Экспериментальные данные, полученные нами на углеродных волокнах, стеклянных волокнах и модельных композитах на их основе, качественно подтверждают выводы модели.

    Mikheyev P.V., Gorynin G.L., Borisova L.R.
    A modified model of the effect of stress concentration near a broken fiber on the tensile strength of high-strength composites (MLLS-6)
    Computer Research and Modeling, 2020, v. 12, no. 3, pp. 559-573

    The article proposes a model for assessing the potential strength of a composite material based on modern fibers with brittle fracture.

    Materials consisting of parallel cylindrical fibers that are quasi-statically stretched in one direction are simulated. It is assumed that the sample is not less than 100 pieces, which corresponds to almost significant cases. It is known that the fibers have a distribution of ultimate deformation in the sample and are not destroyed at the same moment. Usually the distribution of their properties is described by the Weibull–Gnedenko statistical distribution. To simulate the strength of the composite, a model of fiber breaks accumulation is used. It is assumed that the fibers united by the polymer matrix are crushed to twice the inefficient length — the distance at which the stresses increase from the end of the broken fiber to the middle one. However, this model greatly overestimates the strength of composites with brittle fibers. For example, carbon and glass fibers are destroyed in this way.

    In some cases, earlier attempts were made to take into account the stress concentration near the broken fiber (Hedgepest model, Ermolenko model, shear analysis), but such models either required a lot of initial data or did not coincide with the experiment. In addition, such models idealize the packing of fibers in the composite to the regular hexagonal packing.

    The model combines the shear analysis approach to stress distribution near the destroyed fiber and the statistical approach of fiber strength based on the Weibull–Gnedenko distribution, while introducing a number of assumptions that simplify the calculation without loss of accuracy.

    It is assumed that the stress concentration on the adjacent fiber increases the probability of its destruction in accordance with the Weibull distribution, and the number of such fibers with an increased probability of destruction is directly related to the number already destroyed before. All initial data can be obtained from simple experiments. It is shown that accounting for redistribution only for the nearest fibers gives an accurate forecast.

    This allowed a complete calculation of the strength of the composite. The experimental data obtained by us on carbon fibers, glass fibers and model composites based on them (CFRP, GFRP), confirm some of the conclusions of the model.

  3. Садин Д.В.
    Анализ диссипативных свойств гибридного метода крупных частиц для структурно сложных течений газа
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 757-772

    Изучаются вычислительные свойства параметрического класса конечно-объемных схем с настраиваемыми диссипативными свойствами с расщеплением по физическим процессам на лагранжев, эйлеров и заключительный этапы (гибридный метод крупных частиц). Метод обладает вторым порядком аппроксимации по пространству и времени на гладких решениях. Регуляризация численного решения на лагранжевом этапе осуществляется нелинейной коррекцией искусственной вязкости, величина которой, независимо от разрешения сетки, стремится к нулю вне зоны разрывови экстремумовв решении. На эйлеровом и заключительном этапе вначале реконструируются примитивные переменные (плотность, скорость и полная энергия) путем взвешенной ограничителем потоков аддитивной комбинации противопоточной и центральной аппроксимаций. Затем из них формируются численные дивергентные потоки. При этом выполняются дискретные аналоги законов сохранения.

    Выполнен анализ диссипативных свойств метода с использованием известных ограничителей вязкости и потоков, а также их линейной комбинации. Разрешающая способность схемы и качество численных решений продемонстрированы на примерах двумерных тестов с обтеканием ступеньки потоком газа с числами Маха 3, 10 и 20, двойным маховским отражением сильной ударной волны и с импульсным сжатием газа. Изучено влияние схемной вязкости метода на численное воспроизведение неустойчивости на контактных поверхностях газов. Установлено, что уменьшение уровня диссипативных свойств схемы в задаче с импульсным сжатием газа приводит к разрушению симметричного решения и формированию хаотической неустойчивости на контактной поверхности.

    Численные решения сопоставлены с результатами других авторов, полученных по схемам повышенного порядка аппроксимации: КАБАРЕ, HLLC (Harten Lax van Leer Contact), CFLFh (CFLF hybrid scheme), JT (centered scheme with limiter by Jiang and Tadmor), PPM (Piecewise Parabolic Method), WENO5 (weighted essentially non-oscillatory scheme), RKGD (Runge–Kutta Discontinuous Galerkin), с гибридной взвешенной нелинейной интерполяцией CCSSR-HW4 и CCSSR-HW6. К достоинствам гибридного метода крупных частиц относятся расширенные возможности решения задач гиперболического и смешанного типов, хорошее соотношение диссипативных и дисперсионных свойств, сочетание алгоритмической простоты и высокой разрешающей способности в задачах со сложной ударно-волновой структурой, развитием неустойчивости и вихреобразованием на контактных границах.

    Sadin D.V.
    Analysis of dissipative properties of a hybrid large-particle method for structurally complicated gas flows
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 757-772

    We study the computational properties of a parametric class of finite-volume schemes with customizable dissipative properties with splitting by physical processes into Lagrangian, Eulerian, and the final stages (the hybrid large-particle method). The method has a second-order approximation in space and time on smooth solutions. The regularization of a numerical solution at the Lagrangian stage is performed by nonlinear correction of artificial viscosity. Regardless of the grid resolution, the artificial viscosity value tends to zero outside the zone of discontinuities and extremes in the solution. At Eulerian and final stages, primitive variables (density, velocity, and total energy) are first reconstructed by an additive combination of upwind and central approximations weighted by a flux limiter. Then numerical divergent fluxes are formed from them. In this case, discrete analogs of conservation laws are performed.

    The analysis of dissipative properties of the method using known viscosity and flow limiters, as well as their linear combination, is performed. The resolution of the scheme and the quality of numerical solutions are demonstrated by examples of two-dimensional benchmarks: a gas flow around the step with Mach numbers 3, 10 and 20, the double Mach reflection of a strong shock wave, and the implosion problem. The influence of the scheme viscosity of the method on the numerical reproduction of a gases interface instability is studied. It is found that a decrease of the dissipation level in the implosion problem leads to the symmetric solution destruction and formation of a chaotic instability on the contact surface.

    Numerical solutions are compared with the results of other authors obtained using higher-order approximation schemes: CABARET, HLLC (Harten Lax van Leer Contact), CFLFh (CFLF hybrid scheme), JT (centered scheme with limiter by Jiang and Tadmor), PPM (Piecewise Parabolic Method), WENO5 (weighted essentially non-oscillatory scheme), RKGD (Runge –Kutta Discontinuous Galerkin), hybrid weighted nonlinear schemes CCSSR-HW4 and CCSSR-HW6. The advantages of the hybrid large-particle method include extended possibilities for solving hyperbolic and mixed types of problems, a good ratio of dissipative and dispersive properties, a combination of algorithmic simplicity and high resolution in problems with complex shock-wave structure, both instability and vortex formation at interfaces.

  4. Грачев В.А., Найштут Ю.С.
    Прогнозирование потери несущей способности пологих выпуклых оболочек на основе анализа нелинейных колебаний
    Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1189-1205

    Задачи потери устойчивости тонких упругих оболочек снова стали актуальными, так как в последние годы обнаружено несоответствие между стандартами многих стран по определению нагрузок, вызывающих потерю несущей способности пологих оболочек, и результатами экспериментов по испытаниям тонкостенных авиационных конструкций, изготовленных из высокопрочных сплавов. Основное противоречие состоит в том, что предельные внутренние напряжения, при которых наблюдается потеря устойчивости (хлопок) оболочек, оказываются меньше тех, которые предсказывает принятая теория расчета, отраженная в стандартах США и Европы. Действующие нормативные акты основаны на статической теории пологих оболочек, предложенной в 1930-е годы: в рамках нелинейной теории упругости для тонкостенных структур выделяются устойчивые решения, значительно отличающиеся от форм равновесия, присущих небольшим начальным нагрузкам. Минимальная величина нагрузки, при которой существует альтернативная форма равновесия (низшая критическая нагрузка), принималась в качестве предельно допустимой. В 1970-е годы было установлено, что такой подход оказывается неприемлемым при сложных загружениях. Подобные случаи ранее не встречались на практике, сейчас они появились на более тонких изделиях, эксплуатируемых в сложных условиях. Поэтому необходим пересмотр исходных теоретических положений по оценке несущей способности. Основой теории могут служить недавние математические результаты, установившие асимптотическую близость расчетов по двум схемам: трехмерной динамической теории упругости и динамической теории пологих выпуклых оболочек. В предлагаемой работе вначале формулируется динамическая теория пологих оболочек, которая затем сводится к одному разрешающему интегро-дифференциальному уравнению (после построения специальной функции Грина). Показано, что полученное нелинейное уравнение допускает разделение переменных, имеет множество периодических по времени решений, которые удовлетворяют уравнению Дуффинга «с мягкой пружиной». Это уравнение хорошо изучено, его численный анализ позволяет находить амплитуду и период колебаний в зависимости от свойств функции Грина. Если вызвать колебания оболочки с помощью пробной гармонической по времени нагрузки, то можно измерить перемещения точек поверхности в момент максимальной амплитуды. Предлагается экспериментальная установка, в которой генерируются резонансные колебания пробной нагрузкой, направленной по нормали к поверхности. Экспериментальные измерения перемещений оболочки, а также амплитуды и периода колебаний дают возможность рассчитать коэффициент запаса несущей способности конструкции неразрушающим методом в условиях эксплуатации.

    Grachev V.A., Nayshtut Yu.S.
    Buckling prediction for shallow convex shells based on the analysis of nonlinear oscillations
    Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1189-1205

    Buckling problems of thin elastic shells have become relevant again because of the discrepancies between the standards in many countries on how to estimate loads causing buckling of shallow shells and the results of the experiments on thinwalled aviation structures made of high-strength alloys. The main contradiction is as follows: the ultimate internal stresses at shell buckling (collapsing) turn out to be lower than the ones predicted by the adopted design theory used in the USA and European standards. The current regulations are based on the static theory of shallow shells that was put forward in the 1930s: within the nonlinear theory of elasticity for thin-walled structures there are stable solutions that significantly differ from the forms of equilibrium typical to small initial loads. The minimum load (the lowest critical load) when there is an alternative form of equilibrium was used as a maximum permissible one. In the 1970s it was recognized that this approach is unacceptable for complex loadings. Such cases were not practically relevant in the past while now they occur with thinner structures used under complex conditions. Therefore, the initial theory on bearing capacity assessments needs to be revised. The recent mathematical results that proved asymptotic proximity of the estimates based on two analyses (the three-dimensional dynamic theory of elasticity and the dynamic theory of shallow convex shells) could be used as a theory basis. This paper starts with the setting of the dynamic theory of shallow shells that comes down to one resolving integrodifferential equation (once the special Green function is constructed). It is shown that the obtained nonlinear equation allows for separation of variables and has numerous time-period solutions that meet the Duffing equation with “a soft spring”. This equation has been thoroughly studied; its numerical analysis enables finding an amplitude and an oscillation period depending on the properties of the Green function. If the shell is oscillated with the trial time-harmonic load, the movement of the surface points could be measured at the maximum amplitude. The study proposes an experimental set-up where resonance oscillations are generated with the trial load normal to the surface. The experimental measurements of the shell movements, the amplitude and the oscillation period make it possible to estimate the safety factor of the structure bearing capacity with non-destructive methods under operating conditions.

  5. Долуденко А.Н., Куликов Ю.М., Савельев А.С.
    Хаотизация течения под действием объемной силы
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 883-912

    В предлагаемой статье приводятся результаты аналитического и компьютерного исследования хаотической эволюции регулярного поля скорости, возникающего под действием крупномасштабной гармонической вынуждающей силы. Авторами получено аналитическое решение для функции тока течения и ее производных величин (скорости, завихренности, кинетической энергии, энстрофии и палинстрофии). Проведено численное моделирование эволюции течения с помощью пакета программ OpenFOAM (на основе модели несжимаемой среды), а также двух собственных реализаций, использующих приближение слабой сжимаемости (схемы КАБАРЕ и схемы МакКормака). Расчеты проводились на последовательности вложенных сеток с 642, 1282, 2562, 5122, 10242 ячейками для двух характерных (асимптотических) чисел Рейнольдса Rea, характеризующих ламинарную и турбулентную эволюцию течения соответственно. Моделирование показало, что разрушение аналитического решения происходит в обоих случаях. Энергетические характеристики течения обсуждаются на основе кривых энергии, а также скоростей диссипации. Для самой подробной сетки эта величина оказывается на несколько порядков меньше своего гидродинамического (вязкого) аналога. Разрушение регулярной структуры течения наблюдается для любого из численных методов, в том числе на поздних стадиях ламинарной эволюции, когда полученные распределения близки к аналитическим значениям. Можно предположить, что предпосылкой к развитию неустойчивости выступает ошибка, накапливаемая в процессе счета. Эта ошибка приводит к неравномерностям в распределении завихренности и, как следствие, к появлению вихрей различной интенсивности, взаимодействие которых приводит к хаотизации течения. Для исследования процессов производства завихренности мы использовали две интегральные величины, определяемые на ее основе, — интегральные энстрофию ($\zeta$) и палинстрофию $(P)$. Постановка задачи с периодическими граничными условиями позволяет установить простую связь между этими величинами. Кроме того, $\zeta$ может выступать в качестве меры вихреразрешающей способности численного метода, а палинстрофия определяет степень производства мелкомасштабной завихренности.

    Doludenko A.N., Kulikov Y.M., Saveliev A.S.
    Сhaotic flow evolution arising in a body force field
    Computer Research and Modeling, 2024, v. 16, no. 4, pp. 883-912

    This article presents the results of an analytical and computer study of the chaotic evolution of a regular velocity field generated by a large-scale harmonic forcing. The authors obtained an analytical solution for the flow stream function and its derivative quantities (velocity, vorticity, kinetic energy, enstrophy and palinstrophy). Numerical modeling of the flow evolution was carried out using the OpenFOAM software package based on incompressible model, as well as two inhouse implementations of CABARET and McCormack methods employing nearly incompressible formulation. Calculations were carried out on a sequence of nested meshes with 642, 1282, 2562, 5122, 10242 cells for two characteristic (asymptotic) Reynolds numbers characterizing laminar and turbulent evolution of the flow, respectively. Simulations show that blow-up of the analytical solution takes place in both cases. The energy characteristics of the flow are discussed relying upon the energy curves as well as the dissipation rates. For the fine mesh, this quantity turns out to be several orders of magnitude less than its hydrodynamic (viscous) counterpart. Destruction of the regular flow structure is observed for any of the numerical methods, including at the late stages of laminar evolution, when numerically obtained distributions are close to analytics. It can be assumed that the prerequisite for the development of instability is the error accumulated during the calculation process. This error leads to unevenness in the distribution of vorticity and, as a consequence, to the variance vortex intensity and finally leads to chaotization of the flow. To study the processes of vorticity production, we used two integral vorticity-based quantities — integral enstrophy ($\zeta$) and palinstrophy $(P)$. The formulation of the problem with periodic boundary conditions allows us to establish a simple connection between these quantities. In addition, $\zeta$ can act as a measure of the eddy resolution of the numerical method, and palinstrophy determines the degree of production of small-scale vorticity.

  6. Чередниченко А.И., Захаров П.В., Старостенков М.Д., Сысоева М.О., Ерёмин А.М.
    Нелинейная супратрансмиссия в кристалле Pt3Al при интенсивном внешнем воздействии
    Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 109-117

    Методом молекулярной динамики изучен эффект нелинейной супратрансмиссии в кристалле стехиометрии А3В, на примере Pt3Al, заключающийся в передаче энергии на частотах вне фононного спектра кристалла. Исследование механизмов транспорта энергии от поверхности материала вглубь является важной задачей как с теоретической точки зрения, так и с точки зрения перспектив практического применения при модификации приповерхностных слоев обработкой интенсивными внешними воздействиями различного характера. Модель представляла собой объемный гранецентрированный кубический кристалл, атомы которого взаимодействовали посредством многочастичного потенциала, полученного методом погруженного атома, что обеспечивает большую реалистичность модели по сравнению с применением парных потенциалов. Рассмотрены разные формы осцилляции области внешнего воздействия. Показана возможность транспорта энергии от поверхности кристалла вглубь посредством возбуждения квазибризеров вблизи области воздействия и последующего их разрушения в кристалле и рассеяния запасенной на них энергии. Отметим, что под квазибризерами понимаются высокоамплитудные нелинейные колебания атомов легкого компонента сплава на частотах вне фононного спектра кристалла. При этом установлено, что не при любой форме осцилляции области воздействия наблюдался данный эффект. Наиболее интенсивно квазибризеры возникали вблизи области воздействия при синусоидальной форме колебаний. Полученные результаты свидетельствуют, что вклад квазибризеров в передачу энергии по кристаллу возрастает при увеличении амплитуды воздействия. Рассмотрен диапазон амплитуд от 0.05 до 0.5 Å. Частота воздействия варьировалась от 0.2 до 15 ТГц, что обеспечивало охват всего спектра малоамплитудных колебаний для данной модели кристалла. Установлена минимальная величина амплитуды внешнего воздействия, при которой наблюдался данный эффект, которая составила 0.2 Å. При амплитудах более 0.5 Å происходит быстрое разрушение ячейки для частот, близких к оптической ветви фононного спектра. Результаты проведенного исследования могут быть полезны при лазерной обработке материалов и обработке поверхности низкоэнергетической плазмой, а также в радиационном материаловедении.

    Cherednichenko A.I., Zakharov P.V., Starostenkov M.D., Sysoeva M.O., Eremin A.M.
    Nonlinear supratransmission in a Pt3Al crystal at intense external influence
    Computer Research and Modeling, 2019, v. 11, no. 1, pp. 109-117

    The effect of the nonlinear supratransmission in crystal of A3B stoichiometry is studied by molecular dynamics on the example of Pt3Al alloy. This effect is the transfer of energy at frequencies outside the phonon spectrum of the crystal. Research of the mechanisms of energy transport from the material surface to the interior is the important task, both from the theoretical point of view and from the prospects for practical application in the modification of near-surface layers by treatment with intense external influence of various types. The model was a three-dimensional face-centered cubic crystal whose atoms interact by means of the multiparticle potential obtained by the embedded atom method, which provides greater realism of the model in comparison with the use of pair potentials. Various forms of oscillation of the external influence region are considered. The possibility of energy transport from the crystal surface to the interior is shown by excitation of quasi-breathers near the region of influence and their subsequent destruction in the crystal and scattering of the energy stored on them. The quasibreathers are high-amplitude nonlinear atoms' oscillations of the alloy lightweight component at frequencies outside the phonon spectrum of the crystal. This effect was observed not with every oscillation's form of the region of influence. Quasi-breathers appeared most intensely near the region of influence with sinusoidal form oscillations. The results obtained indicate that the contribution of quasi-breathers to the energy transfer through the crystal increases with increasing amplitude of the influence. The range of amplitudes from 0.05 to 0.5 Å is considered. The frequency of the influence varied from 0.2 to 15 THz, which ensured the coverage of the entire spectrum of lowamplitude oscillations for this crystal's model. The minimum magnitude of the external effect amplitude at which this effect was observed was found to be 0.15 Å. At amplitudes greater than 0.5 Å, the cell rapidly decays for frequencies close to the optical branch of the phonon spectrum. The results of the study can be useful for laser processing of materials, surface treatment by low-energy plasma, and also in radiation materials science.

    Просмотров за год: 18.
  7. Чернядьев С.А., Жиляков А.В., Горбатов В.И., Коробова Н.Ю., Сивкова Н.И., Аретинский А.В., Чернооков А.И.
    Математическое моделирование теплофизических процессов в стенке кисты Бейкера, при нагреве внутрикистозной жидкости лазерным излучением длиной волны 1.47 мкм
    Компьютерные исследования и моделирование, 2018, т. 10, № 1, с. 103-112

    Работа посвящена теоретическому изучению величины деструктивного влияния на нормальные ткани организма инфракрасным излучением, выходящим за пределы обрабатываемого патологического очага. Такая ситуация возможна при сверхдлительном воздействии прямого лазерного излучения на биоткани. Решением этой проблемы может служить равномерное распределение тепла внутри объема через опосредованное нагревание жидкости, что способствует минимальному повреждению перифокальных структур. Представлена нестационарная теплофизическая модель процесса распространения тепла в биотканях, позволяющая проводить исследования передачи энергии от внутреннего жидкого содержимого кисты Бейкера, нагреваемого инфракрасным лазерным излучением заданной удельной мощности, через определенную толщину ее стенки к окружающим биологическим тканям. Расчет пространственно-временного распределения температуры в стенке кисты и окружающей жировой ткани осуществляется конечно-разностным методом. Время эффективного воздействия температуры на всю толщину стенки кисты оценивалось достижением 55 °С на ее наружной поверхности. Безопасность процедуры обеспечивает длительность экспозиции данной величины не более 10 секунд.

    В результате проведенных вычислений установлено, что имеются несколько режимов работы хирургического лазера, соответствующих всем требованиям безопасности при одновременной эффективности процедуры. Локальная односторонняя гипертермия синовиальной оболочки и последующая коагуляция всей толщины стенки за счет переноса тепла способствуют ликвидации полостного новообразования подколенной области. При ее толщине 3 мм удовлетворительным является режим нагрева, при котором время воздействия длится около 200 секунд, а удельная мощность лазерного излучения во внутренней среде жидкостного содержимого кисты Бейкера составляет примерно 1 Вт/г.

    Chernyadiev S.A., Zhilyakov A.V., Gorbatov V.I., Korobova N.Y., Sivkova N.I., Aretinsky A.V., Chernookov A.I.
    Mathematical modeling of thermophysical processes in the wall of the Baker cyst, when intra-cystic fluid is heated by laser radiation 1.47 μm in length
    Computer Research and Modeling, 2018, v. 10, no. 1, pp. 103-112

    The work is devoted to the study of the theoretical value of destructive influence on normal tissues of an organism by infrared radiation that goes beyond the treated pathological focus. This situation is possible if the direct laser radiation on the tissues is extremely long-acting. The solution to this problem can be the uniform distribution of heat inside the volume through indirect heating of the liquid, which contributes to minimal damage to the perifocal structures. A non-stationary thermophysical model of the process of heat propagation in biological tissues is presented, allowing to carry out studies of energy transfer from internal liquid contents of Baker's cyst heated by infrared laser radiation of a given specific power through a certain thickness of its wall to surrounding biological tissues. Calculation of the spacetime temperature distribution in the cyst wall and surrounding fat tissue is carried out by the finite-difference method. The time of effective exposure to temperature on the entire thickness of the cyst wall was estimated to be 55 ° C on its outer surface. The safety procedure ensures the exposure duration of this value is not more than 10 seconds.

    As a result of the calculations carried out, it is established that there are several operating modes of a surgical laser that meet all the safety requirements with a simultaneous effective procedure. Local one-sided hyperthermia of the synovial membrane and subsequent coagulation of the entire wall thickness due to heat transfer contributes to the elimination of the cavity neoplasm of the popliteal region. With a thickness of 3 mm, the heating mode is satisfactory, under which the exposure time lasts about 200 seconds, and the specific power of the laser radiation in the internal medium of the liquid contents of the Baker cyst is approximately 1.

    Просмотров за год: 21. Цитирований: 2 (РИНЦ).
  8. Бессонов Н.М., Бочаров Г.А., Бушнита А., Вольперт В.А.
    Гибридные модели в биомедицинских приложениях
    Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 287-309

    В статье представлен обзор недавних работ по гибридным дискретно-непрерывным моделям в динамике клеточных популяций. В этих моделях, широко используемых в биологическом моделировании, клетки рассматриваются как отдельные объекты, которые могут делиться, умирать, дифференцироваться и двигаться под воздействием внешних сил. В простейшем представлении клетки рассматриваются как мягкие сферы, их движение описывается вторым законом Ньютона для их центров. В более полном представлении могут учитываться геометрия и структура клеток. Судьба клеток определяется концентрациями внутриклеточных веществ и различных веществ во внеклеточном матриксе, таких как питательные вещества, гормоны, факторы роста. Внутриклеточные регуляторные сети описываются обыкновенными дифференциальными уравнениями, а внеклеточные концентрации — уравнениями в частных производных. Мы проиллюстрируем применение этого подхода некоторыми примерами, в том числе бактериальными филаметами и ростом раковойоп ухоли. Далее будут приведены более детальные исследования эритропоэза и иммунного ответа. Эритроциты произодятся в костном мозге в небольших структурах, называемых эритробластными островками. Каждыйо стровок образован центральным макрофагом, окруженным эритроидными предшественниками на разных стадиях зрелости. Их выбор между самообновлением, дифференцировкойи апоптозом определяется регуляцией ERK/Fas и фактором роста, производимым макрофагами. Нормальное функционирование эритропоэза может быть нарушено развитием множественной миеломы, злокачественного заболевания крови, которое приводит к разрушению эритробластических островков и к развитию анемии. Последняя часть работы посвящена применению гибридных моделей для изучения иммунного ответа и развития вируснойинф екции. Представлена двухмасштабная модель, включающая лимфатическийу зел и другие ткани организма, включая кровеносную систему.

    Bessonov N.M., Bocharov G.A., Bouchnita A., Volpert V.A.
    Hybrid models in biomedical applications
    Computer Research and Modeling, 2019, v. 11, no. 2, pp. 287-309

    The paper presents a review of recent developments of hybrid discrete-continuous models in cell population dynamics. Such models are widely used in the biological modelling. Cells are considered as individual objects which can divide, die by apoptosis, differentiate and move under external forces. In the simplest representation cells are considered as soft spheres, and their motion is described by Newton’s second law for their centers. In a more complete representation, cell geometry and structure can be taken into account. Cell fate is determined by concentrations of intra-cellular substances and by various substances in the extracellular matrix, such as nutrients, hormones, growth factors. Intra-cellular regulatory networks are described by ordinary differential equations while extracellular species by partial differential equations. We illustrate the application of this approach with some examples including bacteria filament and tumor growth. These examples are followed by more detailed studies of erythropoiesis and immune response. Erythrocytes are produced in the bone marrow in small cellular units called erythroblastic islands. Each island is formed by a central macrophage surrounded by erythroid progenitors in different stages of maturity. Their choice between self-renewal, differentiation and apoptosis is determined by the ERK/Fas regulation and by a growth factor produced by the macrophage. Normal functioning of erythropoiesis can be compromised by the development of multiple myeloma, a malignant blood disorder which leads to a destruction of erythroblastic islands and to sever anemia. The last part of the work is devoted to the applications of hybrid models to study immune response and the development of viral infection. A two-scale model describing processes in a lymph node and other organs including the blood compartment is presented.

    Просмотров за год: 25.
  9. Нгуен Б.Х., Ха Д.Т., Цибулин В.Г.
    Мультистабильность для системы трех конкурирующих видов
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1325-1342

    Проводится исследование вольтерровской модели, описывающей конкуренцию трех видов. Соответствующая система дифференциальных уравнений первого порядка с квадратичной правой частью после замены переменных сводится к системе с восемью параметрами. Два из них характеризуют скорости роста популяций, для первого вида этот параметр принят равным единице. Остальные шесть коэффициентов задают матрицу взаимодействий видов. Ранее при аналитическом исследовании так называемых симметричной модели [May, Leonard, 1975] и асимметричной модели [Chi, Wu, Hsu, 1998] с коэффициентами роста, равными единице, были установлены соотношения на коэффициенты взаимодействия, при которых система имеет однопараметрическое семейство предельных циклов. В данной работе проведено численно-аналитическое исследование полной системы на основе косимметричного подхода, позволившего определить соотношения на параметры, которым отвечают семейства равновесий. Получены различные варианты однопараметрических семейств и показано, что они могут состоять как из устойчивых, так и из неустойчивых равновесий. В случае матрицы взаимодействий с единичными коэффициентами найдены мультикосимметрия системы и двухпараметрическое семейство равновесий, существующее при любых коэффициентах роста. Для различных коэффициентов взаимодействия найдены значения параметров роста, при которых реализуются периодические режимы. Их принадлежность семейству предельных циклов подтверждена расчетом мультипликаторов. В широком диапазоне значений, нарушающих соотношения, при которых обеспечивается существование циклов, получается типичное при разрушении косимметрии медленное колебательное установление. Приведены примеры, когда фиксированному значению одного параметра роста отвечают два значения другого параметра, так что существуют разные семейства периодических режимов. Таким образом, установлена вариативность сценариев развития трехвидовой системы.

    Nguyen B.H., Ha D.T., Tsybulin V.G.
    Multistability for system of three competing species
    Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1325-1342

    The study of the Volterra model describing the competition of three types is carried out. The corresponding system of first-order differential equations with a quadratic right-hand side, after a change of variables, reduces to a system with eight parameters. Two of them characterize the growth rates of populations; for the first species, this parameter is taken equal to one. The remaining six coefficients define the species interaction matrix. Previously, in the analytical study of the so-called symmetric model [May, Leonard, 1975] and the asymmetric model [Chi, Wu, Hsu, 1998] with growth factors equal to unity, relations were established for the interaction coefficients, under which the system has a one-parameter family of limit cycles. In this paper, we carried out a numerical-analytical study of the complete system based on a cosymmetric approach, which made it possible to determine the ratios for the parameters that correspond to families of equilibria. Various variants of oneparameter families are obtained and it is shown that they can consist of both stable and unstable equilibria. In the case of an interaction matrix with unit coefficients, a multicosymmetry of the system and a two-parameter family of equilibria are found that exist for any growth coefficients. For various interaction coefficients, the values of growth parameters are found at which periodic regimes are realized. Their belonging to the family of limit cycles is confirmed by the calculation of multipliers. In a wide range of values that violate the relationships under which the existence of cycles is ensured, a slow oscillatory establishment, typical of the destruction of cosymmetry, is obtained. Examples are given where a fixed value of one growth parameter corresponds to two values of another parameter, so that there are different families of periodic regimes. Thus, the variability of scenarios for the development of a three-species system has been established.

  10. Холодов А.С.
    Об эволюции возмущений, вызванных движением метеороидов в атмосфере Земли
    Компьютерные исследования и моделирование, 2013, т. 5, № 6, с. 993-1030

    На основе МГД-уравнений рассмотрены нестационарные 2D- и 3D-задачи об эволюции возмущений в нижней атмосфере и в ионосфере Земли, вызываемыхдвиж ением по пологим траекториям входа крупных метеороидов с имитацией ихразр ушения путем мгновенного увеличения миделя в точке максимума скоростного напора. По  результатам численного исследования получены и проанализированы детальные пространственно-временные распределения основныхпарамет ров плазменных течений, из которых, в частности, следует ряд явлений, сходных с наблюдавшимися в челябинском феномене.

    Kholodov A.S.
    About the Evolution of Perturbations Caused by the Movement of Meteoroids in the Earth’s Atmosphere
    Computer Research and Modeling, 2013, v. 5, no. 6, pp. 993-1030

    On the basis of the MGD equations we consider 2D- and 3D- nonstationary problems about the evolution of perturbations in the lower atmosphere and the Earth’s ionosphere which are caused by the movement of large meteoroids along gently sloping paths of the entry with the simulation of their destruction by the momentary increase of the midship at the point of the pressure head maximum. According to the results of our numerical investigation we obtain and analyze the detailed spatial-temporal distributions of the main parameters of the plasma flows from which in particular a number of phenomena that are similar to those seen in the Chelyabinsk phenomenon follow.

    Просмотров за год: 1. Цитирований: 1 (РИНЦ).
Страницы: предыдущая следующая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.