Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'constitutive equations':
Найдено статей: 4
  1. Изучается геометрия сплошных сред с внутренними степенями свободы методом подвижного репера Картана. Выводятся условия неразрывности деформаций в форме уравнений структуры для многообразий. Предлагаются определяющие соотношения для жесткопластических сред с внутренними степенями свободы. Доказываются аналоги теорем о предельных нагрузках. Показано применение этих теорем для анализа поведения жесткопластических континуальных оболочек из материалов, обладающих памятью формы. Приведено вычисление предельных нагрузок для оболочек вращения при воздействии внешних сил и при восстановлении формы от нагрева.

    Grachev V.A., Nayshtut Yu.S.
    Ultimate load theorems for rigid plastic solids with internal degrees of freedom and their application in continual lattice shells
    Computer Research and Modeling, 2013, v. 5, no. 3, pp. 423-432

    This paper studies solids with internal degrees of freedom using the method of Cartan moving hedron. Strain compatibility conditions are derived in the form of structure equations for manifolds. Constitutive relations are reviewed and ultimate load theorems are proved for rigid plastic solids with internal degrees of freedom. It is demonstrated how the above theorems can be applied in behavior analysis of rigid plastic continual shells of shape memory materials. The ultimate loads are estimated for rotating shells under external forces and in case of shape recovery from heating.

    Цитирований: 2 (РИНЦ).
  2. Извеков О.Я.
    Модель анизотропной прочности со скалярным параметром поврежденности
    Компьютерные исследования и моделирование, 2014, т. 6, № 6, с. 937-942

    В работе обсуждается возможность моделирования анизотропии прочности слоистой упругой среды с использованием скалярного параметра поврежденности. Сформулированы термодинамически согласованные определяющие уравнения. С помощью пакета SIMULIA/Abaqus моделируется процесс растяжения и сжатия образцов. Результаты расчета с использованием предложенной модели сравниваются с известными из литературы экспериментальными данными и предсказаниями традиционных моделей.

    Izvekov O.Ya.
    Modeling of anisotropic strength using scalar damage parameter
    Computer Research and Modeling, 2014, v. 6, no. 6, pp. 937-942

    The paper discusses the possibility of modeling the strength anisotropy of layered elastic medium using a scalar damage parameter. Thermodynamically consistent constitutive equations are formulated. Using SIMULIA / Abaqus we numerically simulated the stretching and compression of the samples. The results of calculation using the proposed model are compared with the known experimental data from the literature and the predictions of traditional models.

    Просмотров за год: 1.
  3. Представлена математическая модель, описывающая необратимые процессы поляризации и деформирования поликристаллических сегнетоэлектриков во внешних электрических и механических полях большой интенсивности, вследствие чего изменяется внутренняя структура и меняются свойства материала. Необратимые явления моделируются в трехмерной постановке для случая одновременного воздействия электрического поля и механических напряжений. Объектом исследования является представительный объем, в котором исследуются остаточные явления в виде возникающих индуцированных и необратимых частей вектора поляризации и тензора деформации. Основной задачей моделирования является построение определяющих соотношений, связывающих между собой вектор поляризации и тензор деформации, с одной стороны, и вектор электрического поля и тензор механических напряжений, с другой стороны. Рассмотрен общий случай, когда направление электрического поля может не совпадать ни с одним из главных направлений тензора механических напряжений. Для обратимых составляющих определяющие соотношения построены в виде линейных тензорных уравнений, в которых упругие и диэлектрические модули зависят от остаточной деформации, а пьезоэлектрические модули - от остаточной поляризации. Определяющие соотношения для необратимых частей строятся в несколько этапов. Вначале построена вспомогательная модель идеального или безгистерезисного случая, когда все векторы спонтанной поляризации могут поворачиваться в поле внешних сил без взаимного влияния друг на друга. Предложен способ подсчета результирующих значений предельно возможных значений поляризации и деформации идеального случая в виде поверхностных интегралов по единичной сфере с плотностью распределения, полученной из статистического закона Больцмана. Далее сделаны оценки энергетических затрат, необходимых для слома механизмов закрепления доменов, и подсчитана работа внешних полей в реальном и идеальном случаях. На основании этого выведен энергетический баланс и получены определяющие соотношения для необратимых составляющих в виде уравнений в дифференциалах. Разработана схема численного решения этих уравнений для определения текущих значений необратимых искомых характеристик в заданных электрических и механических полях. Для циклических нагрузок построены диэлектрические, деформационные и пьезоэлектрические гистерезисные кривые.

    Разработанная модель может быть имплантирована в конечно-элементный комплекс для расчета неоднородных остаточных полей поляризации и деформирования с последующим определением физических модулей неоднородно поляризованной керамики как локально анизотропного тела.

    Skaliukh A.S.
    Modeling the response of polycrystalline ferroelectrics to high-intensity electric and mechanical fields
    Computer Research and Modeling, 2022, v. 14, no. 1, pp. 93-113

    A mathematical model describing the irreversible processes of polarization and deformation of polycrystalline ferroelectrics in external electric and mechanical fields of high intensity is presented, as a result of which the internal structure changes and the properties of the material change. Irreversible phenomena are modeled in a three-dimensional setting for the case of simultaneous action of an electric field and mechanical stresses. The object of the research is a representative volume in which the residual phenomena in the form of the induced and irreversible parts of the polarization vector and the strain tensor are investigated. The main task of modeling is to construct constitutive relations connecting the polarization vector and strain tensor, on the one hand, and the electric field vector and mechanical stress tensor, on the other hand. A general case is considered when the direction of the electric field may not coincide with any of the main directions of the tensor of mechanical stresses. For reversible components, the constitutive relations are constructed in the form of linear tensor equations, in which the modules of elasticity and dielectric permeability depend on the residual strain, and the piezoelectric modules depend on the residual polarization. The constitutive relations for irreversible parts are constructed in several stages. First, an auxiliary model was constructed for the ideal or unhysteretic case, when all vectors of spontaneous polarization can rotate in the fields of external forces without mutual influence on each other. A numerical method is proposed for calculating the resulting values of the maximum possible polarization and deformation values of an ideal case in the form of surface integrals over the unit sphere with the distribution density obtained from the statistical Boltzmann law. After that the estimates of the energy costs required for breaking down the mechanisms holding the domain walls are made, and the work of external fields in real and ideal cases is calculated. On the basis of this, the energy balance was derived and the constitutive relations for irreversible components in the form of equations in differentials were obtained. A scheme for the numerical solution of these equations has been developed to determine the current values of the irreversible required characteristics in the given electrical and mechanical fields. For cyclic loads, dielectric, deformation and piezoelectric hysteresis curves are plotted.

    The developed model can be implanted into a finite element complex for calculating inhomogeneous residual polarization and deformation fields with subsequent determination of the physical modules of inhomogeneously polarized ceramics as a locally anisotropic body.

  4. Никитюк А.С.
    Идентификация параметров вязкоупругих моделей клетки на основе силовых кривых и вейвлет-преобразования
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1653-1672

    Механические свойства клеток эукариот играют важную роль в условиях жизненного цикла и при развитии патологических процессов. В работе обсуждается проблема идентификации и верификации параметров вязкоупругих конститутивных моделей на основе данных силовой спектроскопии клеток эукариот. Предлагается использовать одномерное непрерывное вейвлет-преобразование для расчета ядра релаксации. Приводятся аналитические выкладки и результаты численных расчетов, позволяющие на основе экспериментально установленных силовых кривых и теоретических зависимостей «напряжение – деформация» с применением алгоритмов вейвлет-дифференцирования получать аналогичные друг другу функции релаксации. Анализируются тестовые примеры, демонстрирующие корректности программной реализации предложенных алгоритмов. Рассматриваются модели клетки, на примере которых демонстрируется применение предложенной процедуры идентификации и верификации их параметров. Среди них структурно-механическая модель с параллельно соединенными дробными элементами, которая является на данный момент наиболее адекватной с точки зрения соответствия данным атомно-силовой микроскопии широкого класса клеток, и новая статистико-термодинамическая модель, которая не уступает в описательных возможностях моделям с дробными производными, но имеет более ясный физический смысл. Для статистико-термодинамической модели подробно описывается процедура ее построения, которая в себя включает следующее: введение структурной переменной, параметра порядка, для описания ориентационных свойств цитоскелета клетки; постановку и решение статистической задачи для ансамбля актиновых филаментов представительного объема клетки относительно данной переменной; установление вида свободной энергии, зависящей от параметра порядка, температуры и внешней нагрузки. Также предложено в качестве модели представительного элемента клетки использовать ориентационно-вязкоупругое тело. Согласно теории линейной термодинамики получены эволюционные уравнения, описывающие механическое поведение представительного объема клетки, которые удовлетворяют основным термодинамическим законам. Также поставлена и решена задача оптимизации параметров статистико-термодинамической модели клетки, которая может сопоставляется как с экспериментальными данными, так и с результатами симуляций на основе других математических моделей. Определены вязкоупругие характеристики клеток на основе сопоставления с литературными данными.

    Nikitiuk A.S.
    Parameter identification of viscoelastic cell models based on force curves and wavelet transform
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1653-1672

    Mechanical properties of eukaryotic cells play an important role in life cycle conditions and in the development of pathological processes. In this paper we discuss the problem of parameters identification and verification of viscoelastic constitutive models based on force spectroscopy data of living cells. It is proposed to use one-dimensional continuous wavelet transform to calculate the relaxation function. Analytical calculations and the results of numerical simulation are given, which allow to obtain relaxation functions similar to each other on the basis of experimentally determined force curves and theoretical stress-strain relationships using wavelet differentiation algorithms. Test examples demonstrating correctness of software implementation of the proposed algorithms are analyzed. The cell models are considered, on the example of which the application of the proposed procedure of identification and verification of their parameters is demonstrated. Among them are a structural-mechanical model with parallel connected fractional elements, which is currently the most adequate in terms of compliance with atomic force microscopy data of a wide class of cells, and a new statistical-thermodynamic model, which is not inferior in descriptive capabilities to models with fractional derivatives, but has a clearer physical meaning. For the statistical-thermodynamic model, the procedure of its construction is described in detail, which includes the following. Introduction of a structural variable, the order parameter, to describe the orientation properties of the cell cytoskeleton. Setting and solving the statistical problem for the ensemble of actin filaments of a representative cell volume with respect to this variable. Establishment of the type of free energy depending on the order parameter, temperature and external load. It is also proposed to use an oriented-viscous-elastic body as a model of a representative element of the cell. Following the theory of linear thermodynamics, evolutionary equations describing the mechanical behavior of the representative volume of the cell are obtained, which satisfy the basic thermodynamic laws. The problem of optimizing the parameters of the statisticalthermodynamic model of the cell, which can be compared both with experimental data and with the results of simulations based on other mathematical models, is also posed and solved. The viscoelastic characteristics of cells are determined on the basis of comparison with literature data.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.