Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'computational biomechanics':
Найдено статей: 2
  1. Предложена конечно-элементная модель биомеханической системы адекватной сложности (с пространственными, оболочечными и балочными элементами), состоящая из имитатора большеберцовой кости с регенерирующей тканью в месте перелома и аппарата Илизарова. Модель позволяет задавать ортотропные упругие свойства материалов имитатора кости (областей компактной и спонгиозной тканей), вводить неоднородные жесткостные свойства регенерирующей ткани в зоне места перелома, изменять базовые геометрические и механические характеристики модели и параметры конечно-элементной сетки, а также задавать различные внешние воздействия, связанные с нагрузкой на имитатор кости и компрессией или дистракцией между репонирующими кольцами аппарата Илизарова.

    С использованием разработанных программ на командном языке APDL в конечноэлементном комплексе ANSYS проведены расчеты напряженно-деформированного состояния в зоне перелома при варьировании статических сжимающих нагрузок на имитатор кости, величин перемещений репонирующих колец аппарата Илизарова и жесткостных свойств соединительной ткани костной мозоли на различных этапах сращения перелома (гелеобразной, хрящевой, спонгиозной и нормальной костных тканей). Представленная методология и разработанные программы позволяют проводить оценки допустимых величин внешних нагрузок на костьи величин перемещений репонирующих колец аппарата Илизарова на различных этапах регенерации кости в процессе заживления, исходя из априорно задаваемых критериев допуска на максимальные характеристики напряжений в костной мозоли. Предлагаемые подходы могут бытьиспо льзованы в клинических условиях при планировании, реализации и контроле силовых режимов работы при чрескостном остеосинтезе аппаратом Илизарова.

    Golubev G.S., Kargin M.A., Nasedkin A.V., Rodin M.B.
    Computer analysis of the bone regeneration strength in a model system of osteosynthesis by the Ilizarov fixator with static loads
    Computer Research and Modeling, 2014, v. 6, no. 3, pp. 427-440

    The adequate complexity three-dimensional finite element model of biomechanical system with space, shell and beam-type elements was built. The model includes the Ilizarov fixator and tibial bone’s simulator with the regenerating tissue at the fracture location. The proposed model allows us to specify the orthotropic elastic properties of tibial bone model in cortical and trabecular zones. It is also possible to change the basic geometrical and mechanical characteristics of biomechanical system, change the finite element mash density and define the different external loads, such as pressure on the bone and compression or distraction between the repositioned rings of Ilizarov device.

    By using special APDL ANSYS program macros the mode of deformation was calculated in the fracture zone for various static loads on the simulator bone, for compression or distraction between the repositioned rings and for various mechanical properties during different stages of the bone regenerate formation (gelatinous, cartilaginous, trabecular and cortical bone remodeling). The obtained results allow us to estimate the permissible values of the external pressure on the bone and of the displacements of the Ilizarov fixator rings for different stages of the bone regeneration, based on the admittance criterion for the maximum of the stresses in the callus. The presented data can be used in a clinical condition for planning, realization and monitoring of the power modes for transosseous osteosynthesis with the external Ilizarov fixator.

    Просмотров за год: 3.
  2. Василевский Ю.В., Симаков С.С., Гамилов Т.М., Саламатова В.Ю., Добросердова Т.К., Копытов Г.В., Богданов О.Н., Данилов А.А., Дергачев М.А., Добровольский Д.Д., Косухин О.Н., Ларина Е.В., Мелешкина А.В., Мычка Е.Ю., Харин В.Ю., Чеснокова К.В., Шипилов А.А.
    Персонализация математических моделей в кардиологии: трудности и перспективы
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 911-930

    Большинство биомеханических задач, представляющих интерес для клиницистов, могут быть решены только с помощью персонализированных математических моделей. Такие модели позволяют формализовать и взаимоувязать ключевые патофизиологические процессы, на основе клинически доступных данных оценить неизмеряемые параметры, важные для диагностики заболеваний, спрогнозировать результат терапевтического или хирургического вмешательства. Использование моделей в клинической практике накладывает дополнительные ограничения: практикующие врачи требуют валидации модели на клинических случаях, быстроту и автоматизированность всей расчетной технологической цепочки от обработки входных данных до получения результата. Ограничения на время расчета, определяемые временем принятия врачебного решения (порядка нескольких минут), приводят к необходимости использования методов редукции, корректно описывающих исследуемые процессы в рамках численных моделей пониженной размерности или в рамках методов машинного обучения.

    Персонализация моделей требует пациентоориентированной оценки параметров модели и создания персонализированной геометрии расчетной области и построения расчетной сетки. Параметры модели оцениваются прямыми измерениями, либо методами решения обратных задач, либо методами машинного обучения. Требование персонализации моделей накладывает серьезные ограничения на количество настраиваемых параметров модели, которые могут быть измерены в стандартных клинических условиях. Помимо параметров, модели включают краевые условия, которые также должны учитывать особенности пациента. Методы задания персонализированных краевых условий существенно зависят от решаемой клинической задачи, зоны ее интереса и доступных клинических данных. Построение персонализированной области посредством сегментации медицинских изображений и построение расчетной сетки, как правило, занимают значительную долю времени при разработке персонализированной вычислительной модели, так как часто выполняются в ручном или полуавтоматическом режиме. Разработка автоматизированных методов постановки персонализированных краевых условий и сегментации медицинских изображений с последующим построением расчетной сетки является залогом широкого использования математического моделирования в клинической практике.

    Цель настоящей работы — обзор и анализ наших решений по персонализации математических моделей в рамках трех задач клинической кардиологии: виртуальной оценки гемодинамической значимости стенозов коронарных артерий, оценки изменений системного кровотока после гемодинамической коррекции сложных пороков сердца, расчета характеристик коаптации реконструированного аортального клапана.

    Vassilevski Y.V., Simakov S.S., Gamilov T.M., Salamatova V.Yu., Dobroserdova T.K., Kopytov G.V., Bogdanov O.N., Danilov A.A., Dergachev M.A., Dobrovolskii D.D., Kosukhin O.N., Larina E.V., Meleshkina A.V., Mychka E.Yu., Kharin V.Yu., Chesnokova K.V., Shipilov A.A.
    Personalization of mathematical models in cardiology: obstacles and perspectives
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 911-930

    Most biomechanical tasks of interest to clinicians can be solved only using personalized mathematical models. Such models allow to formalize and relate key pathophysiological processes, basing on clinically available data evaluate non-measurable parameters that are important for the diagnosis of diseases, predict the result of a therapeutic or surgical intervention. The use of models in clinical practice imposes additional restrictions: clinicians require model validation on clinical cases, the speed and automation of the entire calculated technological chain, from processing input data to obtaining a result. Limitations on the simulation time, determined by the time of making a medical decision (of the order of several minutes), imply the use of reduction methods that correctly describe the processes under study within the framework of reduced models or machine learning tools.

    Personalization of models requires patient-oriented parameters, personalized geometry of a computational domain and generation of a computational mesh. Model parameters are estimated by direct measurements, or methods of solving inverse problems, or methods of machine learning. The requirement of personalization imposes severe restrictions on the number of fitted parameters that can be measured under standard clinical conditions. In addition to parameters, the model operates with boundary conditions that must take into account the patient’s characteristics. Methods for setting personalized boundary conditions significantly depend on the clinical setting of the problem and clinical data. Building a personalized computational domain through segmentation of medical images and generation of the computational grid, as a rule, takes a lot of time and effort due to manual or semi-automatic operations. Development of automated methods for setting personalized boundary conditions and segmentation of medical images with the subsequent construction of a computational grid is the key to the widespread use of mathematical modeling in clinical practice.

    The aim of this work is to review our solutions for personalization of mathematical models within the framework of three tasks of clinical cardiology: virtual assessment of hemodynamic significance of coronary artery stenosis, calculation of global blood flow after hemodynamic correction of complex heart defects, calculating characteristics of coaptation of reconstructed aortic valve.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.