Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'component descent':
Найдено статей: 2
  1. Востриков Д.Д., Конин Г.О., Лобанов А.В., Матюхин В.В.
    Влияние конечности мантиссы на точность безградиентных методов оптимизации
    Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 259-280

    Безградиентные методы оптимизации, или методы нулевого порядка, широко применяются в обучении нейронных сетей, обучении с подкреплением, а также в промышленных задачах, где доступны лишь значения функции в точке (работа с неаналитическими функциями). В частности, метод обратного распространения ошибки в PyTorch работает именно по этому принципу. Существует общеизвестный факт, что при компьютерных вычислениях используется эвристика чисел с плавающей точкой, и из-за этого возникает проблема конечности мантиссы.

    В этой работе мы, во-первых, сделали обзор наиболее популярных методов аппроксимации градиента: конечная прямая/центральная разность (FFD/FCD), покомпонентная прямая/центральная разность (FWC/CWC), прямая/центральная рандомизация на $l_2$ сфере (FSSG2/CFFG2); во-вторых, мы описали текущие теоретические представления шума, вносимого неточностью вычисления функции в точке: враждебный шум, случайный шум; в-третьих, мы провели серию экспериментов на часто встречающихся классах задач, таких как квадратичная задача, логистическая регрессия, SVM, чтобы попытаться определить, соответствует ли реальная природа машинного шума существующей теории. Оказалось, что в реальности (по крайней мере на тех классах задач, которые были рассмотрены в данной работе) машинный шум оказался чем-то средним между враждебным шумом и случайным, в связи с чем текущая теория о влиянии конечности мантиссы на поиск оптимума в задачах безградиентной оптимизации требует некоторой корректировки.

    Vostrikov D.D., Konin G.O., Lobanov A.V., Matyukhin V.V.
    Influence of the mantissa finiteness on the accuracy of gradient-free optimization methods
    Computer Research and Modeling, 2023, v. 15, no. 2, pp. 259-280

    Gradient-free optimization methods or zeroth-order methods are widely used in training neural networks, reinforcement learning, as well as in industrial tasks where only the values of a function at a point are available (working with non-analytical functions). In particular, the method of error back propagation in PyTorch works exactly on this principle. There is a well-known fact that computer calculations use heuristics of floating-point numbers, and because of this, the problem of finiteness of the mantissa arises.

    In this paper, firstly, we reviewed the most popular methods of gradient approximation: Finite forward/central difference (FFD/FCD), Forward/Central wise component (FWC/CWC), Forward/Central randomization on $l_2$ sphere (FSSG2/CFFG2); secondly, we described current theoretical representations of the noise introduced by the inaccuracy of calculating the function at a point: adversarial noise, random noise; thirdly, we conducted a series of experiments on frequently encountered classes of problems, such as quadratic problem, logistic regression, SVM, to try to determine whether the real nature of machine noise corresponds to the existing theory. It turned out that in reality (at least for those classes of problems that were considered in this paper), machine noise turned out to be something between adversarial noise and random, and therefore the current theory about the influence of the mantissa limb on the search for the optimum in gradient-free optimization problems requires some adjustment.

  2. Плетнев Н.В., Матюхин В.В.
    О модификации метода покомпонентного спуска для решения некоторых обратных задач математической физики
    Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 301-316

    Статья посвящена решению некорректно поставленных задач математической физики для эллиптических и параболических уравнений, а именно задачи Коши для уравнения Гельмгольца и ретроспективной задачи Коши для уравнения теплопроводности с постоянными коэффициентами. Эти задачи сводятся к задачам выпуклой оптимизации в гильбертовом пространстве. Градиенты соответствующих функционалов вычисляются приближенно с помощью решения двух корректных задач. Предлагается метод решения исследуемых задач оптимизации — покомпонентный спуск в базисе из собственных функций связанного с задачей самосопряженного оператора. Если бы было возможно точное вычисление градиента, то этот метод давал бы сколь угодно точное решение задачи в зависимости от количества рассматриваемых элементов базиса. В реальных случаях возникновение погрешностей при вычислениях приводит к нарушению монотонности, что требует применения рестартов и ограничивает достижимое качество. В работе приводятся результаты экспериментов, подтверждающие эффективность построенного метода. Определяется, что новый подход превосходит подходы, основанные на использовании градиентных методов оптимизации: он позволяет достичь лучшего качества решения при значительно меньшем расходе вычислительных ресурсов. Предполагается, что построенный метод может быть обобщен и на другие задачи.

    Pletnev N.V., Matyukhin V.V.
    On the modification of the method of component descent for solving some inverse problems of mathematical physics
    Computer Research and Modeling, 2023, v. 15, no. 2, pp. 301-316

    The article is devoted to solving ill-posed problems of mathematical physics for elliptic and parabolic equations, such as the Cauchy problem for the Helmholtz equation and the retrospective Cauchy problem for the heat equation with constant coefficients. These problems are reduced to problems of convex optimization in Hilbert space. The gradients of the corresponding functionals are calculated approximately by solving two well-posed problems. A new method is proposed for solving the optimization problems under study, it is component-by-component descent in the basis of eigenfunctions of a self-adjoint operator associated with the problem. If it was possible to calculate the gradient exactly, this method would give an arbitrarily exact solution of the problem, depending on the number of considered elements of the basis. In real cases, the inaccuracy of calculations leads to a violation of monotonicity, which requires the use of restarts and limits the achievable quality. The paper presents the results of experiments confirming the effectiveness of the constructed method. It is determined that the new approach is superior to approaches based on the use of gradient optimization methods: it allows to achieve better quality of solution with significantly less computational resources. It is assumed that the constructed method can be generalized to other problems.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.