Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Байесовская вероятностная локализация автономного транспортного средства путем ассимиляции сенсорных данных и информации о дорожных знаках
Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 295-303Локализация транспортного средства является важной задачей в области интеллектуальных транспортных систем. Хорошо известно, что слияние показаний с разных датчиков (англ. Sensor Fusion) позволяет создавать более робастные и точные навигационные системы для автономных транспортных средств. Стандартные подходы, такие как расширенный фильтр Калмана или многочастичный фильтр, либо неэффективны при работе с сильно нелинейными данными, либо потребляют значительные вычислительные ресурсы, что осложняет их использование во встроенных системах. При этом точность сливаемых сенсоров может сильно различаться. Значительный прирост точности, особенно в ситуации, когда GPS (англ. Global Positioning System) не доступен, может дать использование ориентиров, положение которых заранее известно, — таких как дорожные знаки, светофоры, или признаки SLAM (англ. Simultaneous Localization and Mapping). Однако такой подход может быть неприменим в случае, если априорные локации неизвестны или неточны. Мы предлагаем новый подход для уточнения координат транспортного средства с использованием визуальных ориентиров, таких как дорожные знаки. Наша система представляет собой байесовский фреймворк, уточняющий позицию автомобиля с использованием внешних данных о прошлых наблюдениях дорожных знаков, собранных методом краудсорсинга (англ. Crowdsourcing — сбор данных широким кругом лиц). Данная статья представляет также подход к комбинированию траекторий, полученных с помощью глобальных GPS-координат и локальных координат, полученных с помощью акселерометра и гироскопа (англ. Inertial Measurement Unit, IMU), для создания траектории движения транспортного средства в неизвестной среде. Дополнительно мы собрали новый набор данных, включающий в себя 4 проезда на автомобиле в городской среде по одному маршруту, при которых записывались данные GPS и IMU смартфона, видеопоток с камеры, установленной на лобовом стекле, а также высокоточные данные о положении с использованием специализированного устройства Real Time Kinematic Global Navigation Satellite System (RTK-GNSS), которые могут быть использованы для валидации. Помимо этого, с использованием той же системы RTK-GNSS были записаны точные координаты знаков, присутствующих на маршруте. Результаты экспериментов показывают, что байесовский подход позволяет корректировать траекторию движения транспортного средства и дает более точные оценки при увеличении количества известной заранее информации. Предложенный метод эффективен и требует для своей работы, кроме показаний GPS/IMU, только информацию о положении автомобилей в моменты прошлых наблюдений дорожных знаков.
Ключевые слова: байесовское обучение, слияние данных сенсоров, локализация, автономные транспортные средства.
Bayesian localization for autonomous vehicle using sensor fusion and traffic signs
Computer Research and Modeling, 2018, v. 10, no. 3, pp. 295-303Просмотров за год: 22.The localization of a vehicle is an important task in the field of intelligent transportation systems. It is well known that sensor fusion helps to create more robust and accurate systems for autonomous vehicles. Standard approaches, like extended Kalman Filter or Particle Filter, are inefficient in case of highly non-linear data or have high computational cost, which complicates using them in embedded systems. Significant increase of precision, especially in case when GPS (Global Positioning System) is unavailable, may be achieved by using landmarks with known location — such as traffic signs, traffic lights, or SLAM (Simultaneous Localization and Mapping) features. However, this approach may be inapplicable if a priori locations are unknown or not accurate enough. We suggest a new approach for refining coordinates of a vehicle by using landmarks, such as traffic signs. Core part of the suggested system is the Bayesian framework, which refines vehicle location using external data about the previous traffic signs detections, collected with crowdsourcing. This paper presents an approach that combines trajectories built using global coordinates from GPS and relative coordinates from Inertial Measurement Unit (IMU) to produce a vehicle's trajectory in an unknown environment. In addition, we collected a new dataset, including from smartphone GPS and IMU sensors, video feed from windshield camera, which were recorded during 4 car rides on the same route. Also, we collected precise location data from Real Time Kinematic Global Navigation Satellite System (RTK-GNSS) device, which can be used for validation. This RTK-GNSS system was used to collect precise data about the traffic signs locations on the route as well. The results show that the Bayesian approach helps with the trajectory correction and gives better estimations with the increase of the amount of the prior information. The suggested method is efficient and requires, apart from the GPS/IMU measurements, only information about the vehicle locations during previous traffic signs detections.
-
О моделях шины, учитывающих как деформированное состояние, так и эффекты сухого трения в области контакта
Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 163-173Предложена новая приближенная модель качения деформируемого колеса с пневматиком, позволяющая учесть как усилия в пневматике, так и влияние сил сухого трения на устойчивость прямолинейного качения колеса при прогнозировании явления шимми. Модель основана на теории сухого трения с комбинированнойкине матикойотно сительного движения соприкасающихся тел, т. е. при одновременном качении, скольжении и верчении при учете реальнойф ормы области контакта и распределения контактного давления. Главный вектор и главный момент сил, возникающих при контактном взаимодействии с сухим трением, определяются путем интегрирования по области контакта. При этом контактное давление покоя при нулевых скоростях относительного поступательного движения и верчения и в отсутствие качения определяется из решения статической контактной задачи для пневматика с учетом его реальной структуры и физических свойств материалов. В работе использована конечно-элементная модель типового пневматика с продольным протектором. Расчет осуществлен при фиксированном внутреннем давлении наддува, заданной вертикальной силе и коэффициенте трения покоя, равном 0.5. Получены также решения задач о напряженно-деформированном состоянии пневматика при кинематическом нагружении в боковом направлении и при скручивании относительно вертикальной оси. Показано, что с достаточной степенью точности контактное взаимодействие пневматика с абсолютно жесткой опорной поверхностью можно представить в виде двух этапов — адгезии и проскальзывания, при этом, однако, форма пятна контакта остается близкой к круговой. Построены диаграммы, аппроксимирующие численные решения, для боковой силы и момента; на начальном участке взаимодействия зависимости линейны и соответствуют упругой деформации пневматика, на втором участке величины силы и момента постоянны и соответствуют силе сухого трения и моменту трения верчения. Для последних участков получены приближенные выражения для продольной и боковой силы трения, а также момента трения верчения в соответствии с теорией сухого трения с комбинированной кинематикой. Полученная модель может трактоваться как комбинация модели упруго деформируемого колеса по Келдышу, катящегося без проскальзывания, и жесткого колеса по Климову –Журавлёву, взаимодействующего с опорой посредством сил сухого трения.
Ключевые слова: трение сухое, кинематика комбинированная, шины пневматические, состояние деформированное.
On tire models accounting for both deformed state and coupled dry friction in a contact spot
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 163-173A proposed approximate model of the rolling of a deforming wheel with a pneumatic tire allows one to account as well forces in tires as the effect of the dry friction on the stability of the rolling upon the shimmy phenomenon prognosis. The model os based on the theory of the dry friction with combined kinematics of relative motion of interacting bodies, i. e. under the condition of simultaneous rolling, sliding, and spinning with accounting for the real shape of a contact spot and contact pressure distribution. The resultant vector and couple of the forces generated by the contact interaction with dry friction are defined by integration over the contact area, whereas the static contact pressure under the conditions of vanishing velocity of sliding and angular velocity of spinning is computed after the finite-element solution for the statical contact of a pneumatic with a rigid road with accounting forreal internal structure and properties of a tire. The solid finite element model of a typical tire with longitudinal thread is used below as a background. Given constant boost pressure, vertical load and static friction factor 0.5 the numerical solution is constructed, as well as the appropriate solutions for lateral and torsional kinematic loading. It is shown that the contact interaction of a pneumatic tire and an absolutely rigid road could be represented without crucial loss of accuracy as two typical stages, the adhesion and the slip; the contact area shape remains nevertheless close to a circle. The approximate diagrams are constructed for both lateral force and friction torque; on the initial stage the diagrams are linear so that corresponds to the elastic deformation of a tire while on the second stage both force and torque values are constant and correspond to the dry friction force and torque. For the last stages the approximate formulae for the longitudinal and lateral friction force and the friction torque are constructed on the background of the theory of the dry friction with combined kinematics. The obtained model can be treated as a combination of the Keldysh model of elastic wheel with no slip and spin and the Klimov rigid wheel model interacting with a road by dry friction forces.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"