Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'boundary element method':
Найдено статей: 17
  1. Русяк И.Г., Тененев В.А., Суфиянов В.Г., Клюкин Д.А.
    Моделирование неравномерного горения и напряженно-деформированного состояния пороховых элементов трубчатого заряда при выстреле
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1281-1300

    Врабо те представлена физико-математическая постановка задач внутренней баллистики артиллерийского выстрела для заряда, состоящего из совокупности пороховых трубок, и их напряженно-деформированного состояния. Горение и движение пучка пороховых трубок по каналу ствола моделируются эквивалентным трубчатым зарядом всестороннего горения. Предполагается, что эквивалентная трубка движется по оси канала ствола. Скорость движения эквивалентного трубчатого заряда и его текущее положение определяются из второго закона Ньютона. При расчете параметров течения использованы двумерные осесимметричные уравнения газовой динамики, для решения которых строится осесимметричная ортогонализированная разностная сетка, адаптирующаяся к условиям течения. Для численного решения системы газодинамических уравнений применяется метод контрольного объема. Параметры газа на границах контрольных объемов определяются с использованием автомодельного решения задачи о распаде произвольного разрыва С. К. Годунова. Напряженно-деформированное состояние моделируется для отдельной горящей пороховой трубки, находящейся в поле нестационарных газодинамических параметров. Расчет газодинамических параметров выстрела осуществляется без учета деформированного состояния пороховых элементов. При данных условиях рассмотрено поведение пороховых элементов при выстреле. Для решения нестационарной задачи упругости используется метод конечных элементов с разбиением области расчета на треугольные элементы. В процессе выгорания пороховой трубки расчетная сетка на каждом временном слое динамической задачи полностью обновляется в связи с изменением границ порохового элемента за счет горения. Представлены временные зависимости параметров внутрибаллистического процесса и напряженно-деформированного состояния пороховых элементов, а также распределения основных параметров течения продуктов горения в различные моменты времени. Установлено, что трубчатые пороховые элементы в процессе выстрела испытывают существенные деформации, которые необходимо учитывать при решении основной задачи внутренней баллистики. Полученные данные дают представления об уровне эквивалентных напряжений, действующих в различных точках порохового элемента. Представленные результаты говорят об актуальности сопряженной постановки задачи газовой динамики и напряженно-деформированного состояния для зарядов, состоящих из трубчатых порохов, поскольку это позволяет по-новому подойти к проектированию трубчатых зарядов и открывает возможность определения параметров, от которых существенно зависят физика процесса горения пороха и, следовательно, динамика процесса выстрела.

    Rusyak I.G., Tenenev V.A., Sufiyanov V.G., Klyukin D.A.
    Simulation of uneven combustion and stress-strain state of powder elements of a tubular charge during firing
    Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1281-1300

    The paper presents the physical and mathematical formulation of the problems of internal ballistics of an artillery shot for a charge consisting of a set of powder tubes and their stress-strain state. Combustion and movement of a bundle of powder tubes along the barrel channel is modeled by an equivalent tubular charge of all-round combustion. It is assumed that the equivalent tube moves along the axis of the bore. The speed of movement of an equivalent tubular charge and its current position are determined from Newton’s second law. When calculating the flow parameters, two-dimensional axisymmetric equations of gas dynamics were used, for the solution of which an axisymmetric orthogonalized difference grid is constructed, which adapts to the flow conditions. The control volume method is used to numerically solve the system of gas-dynamic equations. The gas parameters at the boundaries of the control volumes are determined using a self-similar solution to the Godunov’s problem of the decay of an arbitrary discontinuity. The stress-strain state is modeled for a separate burning powder tube located in the field of gas-dynamic parameters. The calculation of the gas-dynamic parameters of the shot is carried out without taking into account the deformed state of the powder elements. The behavior of powder elements during firing is considered under these conditions. The finite element method with the division of the calculation area into triangular elements is used to solve the problem of elasticity. In the process of powder tube burnout, the computational grid on each time layer of the dynamic problem is completely updated due to a change in the boundaries of the powder element due to combustion. The paper shows the time dependences of the parameters of the internal ballistics process and the stress-strain state of powder elements, as well as the distribution of the main parameters of the flow of combustion products at different points in time. It has been established that the tubular powder elements during the shot experience significant deformations, which must be taken into account when solving the basic problem of internal ballistics. The data obtained give an idea of the level of equivalent stresses acting at various points of the powder element. The results obtained indicate the relevance of the conjugate formulation of the problem of gas dynamics and the stress-strain state for charges consisting of tubular powders, since this allows a new approach to the design of tubular charges and opens up the possibility of determining the parameters on which the physics of the combustion process of gunpowder significantly depends, therefore, and the dynamics of the shot process.

  2. Максимов Ф.А.
    Сверхзвуковое обтекание системы тел
    Компьютерные исследования и моделирование, 2013, т. 5, № 6, с. 969-980

    Работа посвящена аэродинамическим свойствам системы тел, обтекаемой сверхзвуковым потоком. Рассматривается вопрос об уменьшении взаимного влияния с увеличением размера, характеризующего разлет элементов системы. Для моделирования течения применен метод построения сетки из набора сеток. Одна из сеток, регулярная с прямоугольными ячейками, отвечает за интерференцию между телами и служит для описания внешнего невязкого течения. Другие сетки связаны с поверхностями обтекаемых тел и позволяют описать вязкие слои около обтекаемых тел. Эти сетки накладываются на первую, без совмещения каких-либо узлов. Граничные условия реализуются через интерполяцию функций на границах с одной сетки на другую.

    Maksimov F.A.
    Supersonic flow of system of bodies
    Computer Research and Modeling, 2013, v. 5, no. 6, pp. 969-980

    The given work is devoted aerodynamic properties of system of the bodies which are flowed round by a supersonic stream. The question on reduction of mutual influence with increase in the size characterising scattering of elements of system is considered. The method of construction of a grid is applied to current modeling from a set of grids. One of grids, regular with rectangular cells, is responsible for an interference between bodies
    and serves for the description of an external nonviscous current. Other grids are  connected with surfaces of streamline bodies and allow to describe viscous layers about streamline bodies. These grids are imposed on the first, without combination of any knots. Boundary conditions are realized through interpolation of functions on borders from one grid on another.

    Просмотров за год: 1. Цитирований: 19 (РИНЦ).
  3. Потапов И.И., Потапов Д.И.
    Модель установившегося течения реки в поперечном сечении изогнутого русла
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1163-1178

    Моделирование русловых процессов при исследовании береговых деформаций русла требует вычисления параметров гидродинамического потока, учитывающих существование вторичных поперечных течений, формирующихся на закруглении русла. Трехмерное моделирование таких процессов на текущий момент возможно только для небольших модельных каналов, для реальных речных потоков необходимы модели пониженной размерности. При этом редукция задачи от трехмерной модели движения речного потока к двумерной модели потока в плоскости створа канала предполагает, что рассматриваемый гидродинамический поток является квазистационарным, и для него выполнены гипотезы об асимптотическом поведении потока по потоковой координате створа. С учетом данных ограничений в работе сформулирована математическая модель задачи о движении стационарного турбулентного спокойного речного потока в створе канала. Задача сформулирована в смешанной постановке скорости — «вихрь – функция тока». В качестве дополнительных условий для редукции задачи требуется задание граничных условий на свободной поверхности потока для поля скорости, определяемого в нормальном и касательном направлении к оси створа. Предполагается, что значения данных скоростей должны быть определены из решения вспомогательных задач или получены из данных натурных или экспериментальных измерений.

    Для решения сформулированной задачи используется метод конечных элементов в формулировке Петрова – Галёркина. Получен дискретный аналог задачи и предложен алгоритм ее решения. Выполненные численные исследования показали в целом хорошую согласованность полученных решений при их сравнении с известными экспериментальными данными.

    Полученные погрешности авторы связывают с необходимостью более точного определения циркуляционного поля скоростей в створе потока путем подбора и калибровки более подходящей модели вычисления турбулентной вязкости и граничных условий на свободной границе створа.

    Potapov I.I., Potapov D.I.
    Model of steady river flow in the cross section of a curved channel
    Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1163-1178

    Modeling of channel processes in the study of coastal channel deformations requires the calculation of hydrodynamic flow parameters that take into account the existence of secondary transverse currents formed at channel curvature. Three-dimensional modeling of such processes is currently possible only for small model channels; for real river flows, reduced-dimensional models are needed. At the same time, the reduction of the problem from a three-dimensional model of the river flow movement to a two-dimensional flow model in the cross-section assumes that the hydrodynamic flow under consideration is quasi-stationary and the hypotheses about the asymptotic behavior of the flow along the flow coordinate of the cross-section are fulfilled for it. Taking into account these restrictions, a mathematical model of the problem of the a stationary turbulent calm river flow movement in a channel cross-section is formulated. The problem is formulated in a mixed formulation of velocity — “vortex – stream function”. As additional conditions for problem reducing, it is necessary to specify boundary conditions on the flow free surface for the velocity field, determined in the normal and tangential direction to the cross-section axis. It is assumed that the values of these velocities should be determined from the solution of auxiliary problems or obtained from field or experimental measurement data.

    To solve the formulated problem, the finite element method in the Petrov – Galerkin formulation is used. Discrete analogue of the problem is obtained and an algorithm for solving it is proposed. Numerical studies have shown that, in general, the results obtained are in good agreement with known experimental data. The authors associate the obtained errors with the need to more accurately determine the circulation velocities field at crosssection of the flow by selecting and calibrating a more appropriate model for calculating turbulent viscosity and boundary conditions at the free boundary of the cross-section.

  4. Русяк И.Г., Тененев В.А.
    К вопросу о численном моделировании внутренней баллистики для трубчатого заряда в пространственной постановке
    Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 993-1010

    Для трубчатых пороховых элементов большого удлинения, используемых в артиллерийских метательных зарядах, имеют место условия неравномерного горения. Здесь необходимо параллельно рассматривать процессы горения и движения пороховых газов внутри и вне каналов пороховых трубок. Без этого невозможно адекватно поставить и решить задачи о воспламенении, эрозионном горении и напряженно-деформированном состоянии трубчатых пороховых элементов в процессе выстрела. В работе представлена физико-математическая постановка основной задачи внутренней баллистики артиллерийского выстрела для заряда, состоящего из совокупности пороховых трубок. Горение и движение пучка пороховых трубок по каналу ствола моделируются эквивалентным трубчатым зарядом всестороннего горения. Площади торца и сечения канала такого заряда (эквивалентной трубки) равны сумме площадей торцов и сечений каналов пороховых трубок соответственно. Поверхность горения канала равна сумме внутренних поверхностей трубок в пучке. Внешняя поверхность горения эквивалентной трубки равна сумме внешних поверхностей трубок в пучке. Предполагается, что эквивалентная трубка движется по оси канала ствола. Скорость движения эквивалентного трубчатого заряда и его текущее положение определяются из второго закона Ньютона. Для расчета параметров течения использованы двумерные осесимметричные уравнения газовой динамики, для решения которых строится осесимметричная ортогонализированная разностная сетка, адаптирующаяся к условиям течения. При перемещении и горении трубки разностная сетка перестраивается с учетом изменяющихся областей интегрирования. Для численного решения системы газодинамических уравнений применяется метод контрольного объема. Параметры газа на границах контрольных объемов определяются с использованием автомодельного решения задачи о распаде произвольного разрыва С.К. Годунова. Разработанная методика использована при расчетах внутрибаллистических параметров артиллерийского выстрела. Данный подход рассмотрен впервые и позволяет по-новому подойти к проектированию трубчатых артиллерийских зарядов, поскольку позволяет получить необходимую информацию в виде полей скорости и давления пороховых газов для расчета процесса постепенного воспламенения, нестационарного эрозионного горения, напряженно-деформированного состояния и прочности пороховых элементов при выстреле. Представлены временные зависимости параметров внутрибаллистического процесса и распределения основных параметров течения продуктов горения в различные моменты времени.

    Rusyak I.G., Tenenev V.A.
    On the issue of numerical modeling of internal ballistics for a tubular charge in a spatial setting
    Computer Research and Modeling, 2021, v. 13, no. 5, pp. 993-1010

    There are conditions of uneven combustion for tubular powder elements of large elongation used in artillery propelling charges. Here it is necessary to consider in parallel the processes of combustion and movement of powder gases inside and outside the channels of the powder tubes. Without this, it is impossible to adequately formulate and solve the problems of ignition, erosive combustion and stress-strain state of tubular powder elements in the shot process. The paper presents a physical and mathematical formulation of the main problem of the internal ballistics of an artillery shot for a charge consisting of a set of powder tubes. Combustion and movement of a bundle of powder tubes along the barrel channel is modeled by an equivalent tubular charge of all-round combustion. The end and cross-sectional areas of the channel of such a charge (equivalent tube) are equal to the sum of the areas of the ends and cross-sections of the channels of the powder tubes, respectively. The combustion surface of the channel is equal to the sum of the inner surfaces of the tubes in the bundle. The outer combustion surface of the equivalent tube is equal to the sum of the outer surfaces of the tubes in the bundle. It is assumed that the equivalent tube moves along the axis of the bore. The speed of motion of an equivalent tubular charge and its current position are determined from Newton’s second law. To calculate the flow parameters, we used two-dimensional axisymmetric equations of gas dynamics, for the solution of which an axisymmetric orthogonalized difference mesh is constructed, which adapts to the flow conditions. When the tube moves and burns, the difference grid is rearranged taking into account the changing regions of integration. The control volume method is used for the numerical solution of the system of gas-dynamic equations. The gas parameters at the boundaries of the control volumes are determined using a self-similar solution to the Godunov problem of decay for an arbitrary discontinuity. The developed technique was used to calculate the internal ballistics parameters of an artillery shot. This approach is considered for the first time and allows a new approach to the design of tubular artillery charges, since it allows obtaining the necessary information in the form of fields of velocity and pressure of powder gases for calculating the process of gradual ignition, unsteady erosive combustion, stress-strain state and strength of powder elements during the shot. The time dependences of the parameters of the internal ballistics process and the distribution of the main parameters of the flow of combustion products at different times are presented.

  5. Разработана двумерная математическая модель для оценки напряжений в сварных соединениях, формируемых при многопроходной сварке многослойных сталей. Основой модели является система уравнений, которая включает вариационное уравнение Лагранжа инкрементальной теории пластичности и вариационное уравнение теплопроводности, выражающее принцип М. Био. Вариационно-разностным методом решается задача теплопроводности для расчета нестационарного температурного поля, а затем на каждом шаге по времени – квазистатическая задача термопластичности. Разностная схема построена на треугольных сетках, что дает некоторое повышение точности при описании положения границ раздела структурных элементов.

    Krektuleva R.A., Cherepanov O.I., Cherepanov R.O.
    Numerical solution of a two-dimensional quasi-static problem of thermoplasticity: residual thermal stress calculation for a multipass welding of heterogeneous steels
    Computer Research and Modeling, 2012, v. 4, no. 2, pp. 345-356

    A two-dimensional mathematical model was developed for estimating the stresses in welded joints formed during multipass welding of multilayer steels. The basis of the model is the system of equations that includes the Lagrange variational equation of incremental plasticity theory and the variational equation of heat conduction, which expresses the principle of M. Biot. Variational-difference method was used to solve the problems of heat conductivity and calculation of the transient temperature field, and then at each time step – for the quasi-static problem of thermoplasticity. The numerical scheme is based on triangular meshes, which gives a more accuracy in describing the boundaries of structural elements as compared to rectangular grids.

    Просмотров за год: 4. Цитирований: 6 (РИНЦ).
  6. Бобков В.Г., Абалакин И.В., Козубская Т.К.
    Методика расчета аэродинамических характеристик винтов вертолета на основе реберно-ориентированных схем в комплексе программ NOISEtte
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1097-1122

    В статье дается детальное описание численной методики моделирования турбулентного обтекания вращающихся винтов вертолета и расчета аэродинамических характеристик винта. В качестве базовой математической модели используется система осредненных по Рейнольдсу уравнений Навье – Стокса для вязкого сжимаемого газа, замкнутая моделью турбулентности Спаларта – Аллмараса. Итоговая модель формулируется в неинерциальной вращающейся системе координат, связанной с винтом. Для задания граничных условий на поверхности винта используются пристеночные функции.

    Численное решение полученной системы дифференциальных уравнений проводится на гибридных неструктурированных сетках, включающих призматические слои вблизи поверхности обтекаемого тела. Численный метод строится на основе оригинальных вершинно-центрированных конечно-объемных EBR-схем. Особенностью этих схем является их повышенная точность, которая достигается за счет использования реберно-ориентированной реконструкции переменных на расширенных квазиодномерных шаблонах, и умеренная вычислительная стоимость, позволяющая проводить серийные расчеты. Для приближенного решения задачи о распаде разрыва используются методы Роу и Лакса – Фридрихса. Метод Роу корректируется в случае низкоскоростных течений. При моделировании разрывов или решений с большими градиентами используется квазиодномерная WENO-схема или локальное переключение на квазиодномерную TVD-реконструкцию. Интегрирование по времени проводится по неявной трехслойной схеме второго порядка аппроксимации с линеаризацией по Ньютону системы разностных уравнений. Для решения системы линейных уравнений используется стабилизированный метод сопряженных градиентов.

    Численная методика реализована в составе исследовательского программного комплекса NOISEtte согласно двухуровневой MPI–OpenMP-модели, позволяющей с высокой эффективностью проводить расчеты на сетках, состоящих из сотен миллионов узлов, при одновременном задействовании сотен тысячп роцессорных ядер современных суперкомпьютеров.

    На основе результатов численного моделирования вычисляются аэродинамические характеристики винта вертолета, а именно сила тяги, крутящий момент и их безразмерные коэффициенты.

    Валидация разработанной методики проводится путем моделирования турбулентного обтекания двухлопастного винта Caradonna – Tung и четырехлопастного модельного винта КНИТУ-КАИ на режиме висения, рулевого винта в кольце, а также жесткого несущего винта в косом потоке. численные результаты сравниваются с имеющими экспериментальными данными.

    Bobkov V.G., Abalakin I.V., Kozubskaya T.K.
    Method for prediction of aerodynamic characteristics of helicopter rotors based on edge-based schemes in code NOISEtte
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1097-1122

    The paper gives a detailed description of the developed methods for simulating the turbulent flow around a helicopter rotor and calculating its aerodynamic characteristics. The system of Reynolds-averaged Navier – Stokes equations for a viscous compressible gas closed by the Spalart –Allmaras turbulence model is used as the basic mathematical model. The model is formulated in a non-inertial rotating coordinate system associated with a rotor. To set the boundary conditions on the surface of the rotor, wall functions are used.

    The numerical solution of the resulting system of differential equations is carried out on mixed-element unstructured grids including prismatic layers near the surface of a streamlined body.The numerical method is based on the original vertex-centered finite-volume EBR schemes. A feature of these schemes is their higher accuracy which is achieved through the use of edge-based reconstruction of variables on extended quasi-onedimensional stencils, and a moderate computational cost which allows for serial computations. The methods of Roe and Lax – Friedrichs are used as approximate Riemann solvers. The Roe method is corrected in the case of low Mach flows. When dealing with discontinuities or solutions with large gradients, a quasi-one-dimensional WENO scheme or local switching to a quasi-one-dimensional TVD-type reconstruction is used. The time integration is carried out according to the implicit three-layer second-order scheme with Newton linearization of the system of difference equations. To solve the system of linear equations, the stabilized conjugate gradient method is used.

    The numerical methods are implemented as a part of the in-house code NOISEtte according to the two-level MPI–OpenMP parallel model, which allows high-performance computations on meshes consisting of hundreds of millions of nodes, while involving hundreds of thousands of CPU cores of modern supercomputers.

    Based on the results of numerical simulation, the aerodynamic characteristics of the helicopter rotor are calculated, namely, trust, torque and their dimensionless coefficients.

    Validation of the developed technique is carried out by simulating the turbulent flow around the Caradonna – Tung two-blade rotor and the KNRTU-KAI four-blade model rotor in hover mode mode, tail rotor in duct, and rigid main rotor in oblique flow. The numerical results are compared with the available experimental data.

  7. Погорелова Е.А., Лобанов А.И.
    Высокопроизводительные вычисления в моделировании крови
    Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 917-941

    Приведен обзор методов моделирования движения и реологических свойств крови как суспензии взвешенных частиц. Рассмотрены методы граничных интегральных уравнений, решеточных уравнений Больцмана, конечных элементов на подвижных сетках, диссипативной динамики частиц, а также агентные модели. Приведен анализ применения этих методов при расчетах на высокопроизводительных системах различной архитектуры.

    Pogorelova E.A., Lobanov A.I.
    High Performance Computing for Blood Modeling
    Computer Research and Modeling, 2012, v. 4, no. 4, pp. 917-941

    Methods for modeling blood flow and its rheological properties are reviewed. Blood is considered as a particle suspencion. The methods are boundary integral equation method (BIEM), lattice Boltzmann (LBM), finite elements on dynamic mesh, dissipative particle dynamics (DPD) and agent based modeling. The analysis of these methods’ applications on high-performance systems with various architectures is presented.

    Просмотров за год: 2. Цитирований: 3 (РИНЦ).
Страницы: предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.