Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
publication_info">
Разработка системы ARM на базе блока обработки данных для вы- числений потока данных, реализованного на основе ИС
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 505-509Современные масштабные научные проекты становятся все более информационно ёмкими, и обработка хранимых данных в режиме offline является невозможной. Требуется высокая пропускная способность при вычислениях или Вычисления Потока Данных, чтобы иметь возможность обрабатывать терабайты данных в секунду; такие данные не могут быть элементами длительного хранения. Общепринятые дата-центры, основанные на стандартном аппаратном обеспечении, являются дорогими и настроены на вычислительную мощность. Общая пропускная способность может быть увеличена с помощью массивного параллелизма, чаще всего за счет повышенной вычислительной мощности и потребления энергии. Система ARM на основе ИС (SoC) может решить проблему системы ввода/вывода и соотношение CPU, доступность и эффективность использования энергии, так как ARM SoC являются элементами массового производства и разработаны на основе эффективного использования энергии в мобильных устройствах. На данный момент такой элемент обработки находится в разработке и нацелен на пропускную способность ввода/вывода в 20 Гб/c и значительную вычислительную мощность. Рассмотрены возможности ввода/вывода потребления системы ARM на основе ИС вместе с вычислением производительности и тестами на пропускную способность ввода/вывода.
publication_info">
The development of an ARM system on chip based processing unit for data stream computing
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 505-509Просмотров за год: 1.Modern big science projects are becoming highly data intensive to the point where offline processing of stored data is infeasible. High data throughput computing, or Data Stream Computing, for future projects is required to deal with terabytes of data per second which cannot be stored in long-term storage elements. Conventional data-centres based on typical server-grade hardware are expensive and are biased towards processing power. The overall I/O bandwidth can be increased with massive parallelism, usually at the expense of excessive processing power and high energy consumption. An ARM System on Chip (SoC) based processing unit may address the issue of system I/O and CPU balance, affordability and energy efficiency since ARM SoCs are mass produced and designed to be energy efficient for use in mobile devices. Such a processing unit is currently in development, with a design goal of 20 Gb/s I/O throughput and significant processing power. The I/O capabilities of consumer ARM System on Chips are discussed along with to-date performance and I/O throughput tests.
-
publication_info">
Характеристика тестирования центрального процессора на базе процессоров ARM
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 581-586Большие научные проекты генерируют данные на всё более возрастающих скоростях. Типичные методы включают в себя хранение данных на диске, после незначительного фильтрования, а затем их обработку на больших компьютерных фермах. Производство данных достигло той точки, когда требуется обработка в режиме on-line, чтобы отфильтровать данные до управляемых размеров. Потенциальное решение включает в себя использование низко затратных процессоров ARM с маленькой мощностью в больших массивах для обеспечения массивного распараллеливания для вычислений потока данных (DSC). Главное преимущество в использовании систем на одном кристалле (SoCs) присуще самой философии этой разработки. Системы на микросхеме, прежде всего, используются в мобильных устройствах и, следовательно, потребляют меньше энергии при своей относительно хорошей производительности. Дано описание тестирования трех различных моделей процессоров ARM.
Ключевые слова: высокая вычислительная пропускная способность, большие данные, система на ARM чипе, эталонные тесты.publication_info">
A CPU benchmarking characterization of ARM based processors
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 581-586Просмотров за год: 1.Big science projects are producing data at ever increases rates. Typical techniques involve storing the data to disk, after minor filtering, and then processing it in large computer farms. Data production has reached a point where on-line processing is required in order to filter the data down to manageable sizes. A potential solution involves using low-cost, low-power ARM processors in large arrays to provide massive parallelisation for data stream computing (DSC). The main advantage in using System on Chips (SoCs) is inherent in its design philosophy. SoCs are primarily used in mobile devices and hence consume less power while maintaining relatively good performance. A benchmarking characterisation of three different models of ARM processors will be presented.
-
publication_info">
Описание тестирования памяти однокристальных систем на основе ARM
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 607-613Мощность вычислений традиционно находится в фокусе при разработке крупномасштабных вычислительных систем, в большинстве случаев такие проекты остаются плохо оборудованными и не могут эффективно справляться с ориентированными на высокую производительность рабочими нагрузками. Кроме того, стоимость и вопросы энергопотребления для крупномасштабных вычислительных систем всё ещё остаются источником беспокойства. Потенциальное решение включает в себя использование низко затратных процессоров ARM с маленькой мощностью в больших массивах в манере, которая обеспечивает массивное распараллеливание и высокую пропускную способность, производительность (относительно существующих крупномасштабных вычислительных проектов). Предоставление большего приоритета производительности и стоимости повышает значимость производительности оперативной памяти и оптимизации проекта до высокой производительности всей системы. Используя несколько эталонных тестов производительности оперативной памяти для оценки различных аспектов производительности RAM и кэш-памяти, мы даем описание производительности четырех различных моделей однокристальной системы на основе ARM, а именно Cortex-A9, Cortex-A7, Cortex-A15 r3p2 и Cortex-A15 r3p3. Затем мы обсуждаем значимость этих результатов для вычислений большого объема и потенциала для ARM- процессоров.
Ключевые слова: ARM-процессор, память, эталонные тесты, вычисления, ориентированные на высокую производительность, вычисления большого объема..publication_info">
Memory benchmarking characterisation of ARM-based SoCs
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 607-613Computational intensity is traditionally the focus of large-scale computing system designs, generally leaving such designs ill-equipped to efficiently handle throughput-oriented workloads. In addition, cost and energy consumption considerations for large-scale computing systems in general remain a source of concern. A potential solution involves using low-cost, low-power ARM processors in large arrays in a manner which provides massive parallelisation and high rates of data throughput (relative to existing large-scale computing designs). Giving greater priority to both throughput-rate and cost considerations increases the relevance of primary memory performance and design optimisations to overall system performance. Using several primary memory performance benchmarks to evaluate various aspects of RAM and cache performance, we provide characterisations of the performances of four different models of ARM-based system-on-chip, namely the Cortex-A9, Cortex- A7, Cortex-A15 r3p2 and Cortex-A15 r3p3. We then discuss the relevance of these results to high volume computing and the potential for ARM processors.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"