Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Сравнение результатов применения различных эволюционных алгоритмов для решения задачи оптимизации маршрута беспилотных аппаратов
Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 45-62В данной работе проводится сравнительный анализ точного и эвристических алгоритмов, представленных методом ветвей и границ, генетическим и муравьиным алгоритмами соответственно, для поиска оптимального решения задачи коммивояжера на примере робота-курьера. Целью работы является определение времени работы, длины полученного маршрута и объема памяти, необходимого для работы программы, при использовании метода ветвей и границ и эволюционных эвристических алгоритмов. Также определяется наиболее целесообразный из перечисленных методов для применения в заданных условиях. В настоящей статье используются материалы проведенного исследования, реализованного в формате программы для ЭВМ, программный код для которой реализован на языке Python. В ходе исследования был выбран ряд критериев применимости алгоритмов (время работы программы, длина построенного маршрута и объем необходимой для работы программы памяти), получены результаты работы алгоритмов в заданных условиях и сделаны выводы о степени целесообразности применения того или иного алгоритма в различных заданных условиях работы робота-курьера. В ходе исследования выяснилось, что для малого количества точек ($\leqslant10$) метод ветвей и границ является наиболее предпочтительным, так как находит оптимальное решение быстрее. Однако при вычислении маршрута этим методом, при условии увеличения точек более 10, время работы растет экспоненциально. В таком случае более эффективные результаты дает эвристический подход с использованием генетического и муравьиного алгоритмов. При этом муравьиный алгоритм отличается решениями, наиболее близкими к эталонным, при увеличении точек более 16. Относительным недостатком его является наибольшая ресурсоемкость среди рассматриваемых алгоритмов. Генетический алгоритм дает схожие результаты, но при увеличении точек более 16 растет длина найденного маршрута относительно эталонного. Преимущество генетического алгоритма — его меньшая ресурсоемкость по сравнению с другими алгоритмами.
Практическая значимость данной статьи заключается в потенциальной возможности использования полученных результатов для оптимального решения логистических задач автоматизированной системой в различных сферах: складская логистика, транспортная логистика, логистика «последней мили» и т. д.
Ключевые слова: беспилотные аппараты, алгоритмы оптимизации, метод ветвей и границ, генетический алгоритм, муравьиный алгоритм, задача коммивояжера, логистические системы.
Comparison of the results of using various evolution algorithms to solve the problem of route optimization of unmanned vehicles
Computer Research and Modeling, 2022, v. 14, no. 1, pp. 45-62In this paper, a comparative analysis of the exact and heuristic algorithms presented by the method of branches and boundaries, genetic and ant algorithms, respectively, is carried out to find the optimal solution to the traveling salesman problem using the example of a courier robot. The purpose of the work is to determine the running time, the length of the obtained route and the amount of memory required for the program to work, using the method of branches and boundaries and evolutionary heuristic algorithms. Also, the most appropriate of the listed methods for use in the specified conditions is determined. This article uses the materials of the conducted research, implemented in the format of a computer program, the program code for which is implemented in Python. In the course of the study, a number of criteria for the applicability of algorithms were selected (the time of the program, the length of the constructed route and the amount of memory necessary for the program to work), the results of the algorithms were obtained under specified conditions and conclusions were drawn about the degree of expediency of using one or another algorithm in various specified conditions of the courier robot. During the study, it turned out that for a small number of points $\leqslant10$, the method of branches and boundaries is the most preferable, since it finds the optimal solution faster. However, when calculating the route by this method, provided that the points increase by more than 10, the operating time increases exponentially. In this case, more effective results are obtained by a heuristic approach using a genetic and ant algorithm. At the same time, the ant algorithm is distinguished by solutions that are closest to the reference ones and with an increase of more than 16 points. Its relative disadvantage is the greatest resource intensity among the considered algorithms. The genetic algorithm gives similar results, but after increasing the points more than 16, the length of the found route increases relative to the reference one. The advantage of the genetic algorithm is its lower resource intensity compared to other algorithms.
The practical significance of this article lies in the potential possibility of using the results obtained for the optimal solution of logistics problems by an automated system in various fields: warehouse logistics, transport logistics, «last mile» logistics, etc.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"