Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'alternating minimization':
Найдено статей: 3
  1. Tran T.T., Pham C.T.
    A hybrid regularizers approach based model for restoring image corrupted by Poisson noise
    Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 965-978

    Image denoising is one of the fundamental problems in digital image processing. This problem usually refers to the reconstruction of an image from an observed image degraded by noise. There are many factors that cause this degradation such as transceiver equipment, or environmental influences, etc. In order to obtain higher quality images, many methods have been proposed for image denoising problem. Most image denoising method are based on total variation (TV) regularization to develop efficient algorithms for solving the related optimization problem. TV-based models have become a standard technique in image restoration with the ability to preserve image sharpness.

    In this paper, we focus on Poisson noise usually appearing in photon-counting devices. We propose an effective regularization model based on combination of first-order and fractional-order total variation for image reconstruction corrupted by Poisson noise. The proposed model allows us to eliminate noise while edge preserving. An efficient alternating minimization algorithm is employed to solve the optimization problem. Finally, provided numerical results show that our proposed model can preserve more details and get higher image visual quality than recent state-of-the-art methods.

    Tran T.T., Pham C.T.
    A hybrid regularizers approach based model for restoring image corrupted by Poisson noise
    Computer Research and Modeling, 2021, v. 13, no. 5, pp. 965-978

    Image denoising is one of the fundamental problems in digital image processing. This problem usually refers to the reconstruction of an image from an observed image degraded by noise. There are many factors that cause this degradation such as transceiver equipment, or environmental influences, etc. In order to obtain higher quality images, many methods have been proposed for image denoising problem. Most image denoising method are based on total variation (TV) regularization to develop efficient algorithms for solving the related optimization problem. TV-based models have become a standard technique in image restoration with the ability to preserve image sharpness.

    In this paper, we focus on Poisson noise usually appearing in photon-counting devices. We propose an effective regularization model based on combination of first-order and fractional-order total variation for image reconstruction corrupted by Poisson noise. The proposed model allows us to eliminate noise while edge preserving. An efficient alternating minimization algorithm is employed to solve the optimization problem. Finally, provided numerical results show that our proposed model can preserve more details and get higher image visual quality than recent state-of-the-art methods.

  2. Сайранов А.С., Касаткина Е.В., Нефедов Д.Г., Русяк И.Г.
    Применение генетических алгоритмов для управления организационными системами при возникновении нештатных ситуаций
    Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 533-556

    Оптимальное управление системой топливоснабжения заключается в выборе варианта развития энергетики, при котором достигается наиболее эффективное и надежное топливо- и энергоснабжение потребителей. В рамках реализации программы перевода распределенной системы теплоснабжения Удмуртской Республики на возобновляемые источники энергии была разработана информационно-аналитическая система управления топливоснабжением региона альтернативными видами топлива. В работе представлена математическая модель оптимального управления логистической системой топливоснабжения, состоящая из трех взаимосвязанных уровней: пункты накопления сырья, пункты производства топлива и пункты потребления. С целью повышения эффективности функционирования системы топливоснабжения региона информационно-аналитическая система расширена функционалом оперативного реагирования при возникновении нештатных ситуаций. Возникновение нештатных ситуаций на любом из уровней требует перестроения управления всей системой. Разработаны модели и алгоритмы оптимального управления в случае возникновения нештатных ситуаций, связанных с выходом из строя производственных звеньев логистической системы: пунктов накопления сырья и пунктов производства топлива. В математических моделях оптимального управления в качестве целевого критерия учитываются расходы, связанные с функционированием логистической системы при возникновении нештатной ситуации. Реализация разработанных алгоритмов основана на применении генетических алгоритмов оптимизации, что позволяет достичь наилучших результатов по времени работы алгоритма и точности полученного решения. Разработанные модели и алгоритмы интегрированы в информационно-аналитическую систему и позволяют оперативно реагировать на возникновение чрезвычайных ситуаций в системе топливоснабжения Удмуртской Республики путем применения альтернативных видов топлива.

    Sairanov A.S., Kasatkina E.V., Nefedov D.G., Rusyak I.G.
    The application of genetic algorithms for organizational systems’ management in case of emergency
    Computer Research and Modeling, 2019, v. 11, no. 3, pp. 533-556

    Optimal management of fuel supply system boils down to choosing an energy development strategy which provides consumers with the most efficient and reliable fuel and energy supply. As a part of the program on switching the heat supply distributed management system of the Udmurt Republic to renewable energy sources, an “Information-analytical system of regional alternative fuel supply management” was developed. The paper presents the mathematical model of optimal management of fuel supply logistic system consisting of three interconnected levels: raw material accumulation points, fuel preparation points and fuel consumption points, which are heat sources. In order to increase effective the performance of regional fuel supply system a modification of information-analytical system and extension of its set of functions using the methods of quick responding when emergency occurs are required. Emergencies which occur on any one of these levels demand the management of the whole system to reconfigure. The paper demonstrates models and algorithms of optimal management in case of emergency involving break down of such production links of logistic system as raw material accumulation points and fuel preparation points. In mathematical models, the target criterion is minimization of costs associated with the functioning of logistic system in case of emergency. The implementation of the developed algorithms is based on the usage of genetic optimization algorithms, which made it possible to obtain a more accurate solution in less time. The developed models and algorithms are integrated into the information-analytical system that enables to provide effective management of alternative fuel supply of the Udmurt Republic in case of emergency.

    Просмотров за год: 31.
  3. Тупица Н.К.
    Об адаптивных ускоренных методах и их модификациях для альтернированной минимизации
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 497-515

    В первой части работы получена оценка скорости сходимости ранее известного ускоренного метода первого порядка AGMsDR на классе задач минимизации, вообще говоря, невыпуклых функций с $M$-липшицевым градиентом и удовлетворяющих условию Поляка – Лоясиевича. При реализации метода не требуется знать параметр $\mu^{PL}>0$ из условия Поляка – Лоясиевича, при этом метод демонстрирует линейную скорость сходимости (сходимость со скоростью геометрической прогрессии со знаменателем $\left.\left(1 - \frac{\mu^{PL}}{M}\right)\right)$. Ранее для метода была доказана сходимость со скоростью $O\left(\frac1{k^2}\right)$ на классе выпуклых задач с $M$-липшицевым градиентом. А также сходимость со скоростью геометрической прогрессии, знаменатель которой $\left(1 - \sqrt{\frac{\mu^{SC}}{M}}\right)$, но только если алгоритму известно значение параметра сильной выпуклости $\mu^{SC}>0$. Новизна результата заключается в том, что удается отказаться от использования методом значения параметра $\mu^{SC}>0$ и при этом сохранить линейную скорость сходимости, но уже без корня в знаменателе прогрессии.

    Во второй части представлена новая модификация метода AGMsDR для решения задач, допускающих альтернированную минимизацию (Alternating AGMsDR). Доказываются аналогичные оценки скорости сходимости на тех же классах оптимизационных задач.

    Таким образом, представлены адаптивные ускоренные методы с оценкой сходимости $O\left(\min\left\lbrace\frac{M}{k^2},\,\left(1-{\frac{\mu^{PL}}{M}}\right)^{(k-1)}\right\rbrace\right)$ на классе выпуклых функций с $M$-липшицевым градиентом, которые удовлетворяют условию Поляка – Лоясиевича. При этом для работы метода не требуются значения параметров $M$ и $\mu^{PL}$. Если же условие Поляка – Лоясиевича не выполняется, то можно утверждать, что скорость сходимости равна $O\left(\frac1{k^2}\right)$, но при этом методы не требуют никаких изменений.

    Также рассматривается адаптивная каталист-оболочка неускоренного градиентного метода, которая позволяет доказать оценку скорости сходимости $O\left(\frac1{k^2}\right)$. Проведено экспериментальное сравнение неускоренного градиентного метода с адаптивным выбором шага, ускоренного с помощью адаптивной каталист-оболочки с методами AGMsDR, Alternating AGMsDR, APDAGD (Adaptive Primal-Dual Accelerated Gradient Descent) и алгоритмом Синхорна для задачи, двойственной к задаче оптимального транспорта.

    Проведенные вычислительные эксперименты показали более быструю работу метода Alternating AGMsDR по сравнению как с неускоренным градиентным методом, ускоренным с помощью адаптивной каталист-оболочки, так и с методом AGMsDR, несмотря на асимптотически одинаковые гарантии скорости сходимости $O\left(\frac1{k^2}\right)$. Это может быть объяснено результатом о линейной скорости сходимости метода Alternating AGMsDR на классе задач, удовлетворяющих условию Поляка – Лоясиевича. Гипотеза была проверена на квадратичных задачах. Метод Alternating AGMsDR показал более быструю сходимость по сравнению с методом AGMsDR.

    Tupitsa N.K.
    On accelerated adaptive methods and their modifications for alternating minimization
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 497-515

    In the first part of the paper we present convergence analysis of AGMsDR method on a new class of functions — in general non-convex with $M$-Lipschitz-continuous gradients that satisfy Polyak – Lojasiewicz condition. Method does not need the value of $\mu^{PL}>0$ in the condition and converges linearly with a scale factor $\left(1 - \frac{\mu^{PL}}{M}\right)$. It was previously proved that method converges as $O\left(\frac1{k^2}\right)$ if a function is convex and has $M$-Lipschitz-continuous gradient and converges linearly with a~scale factor $\left(1 - \sqrt{\frac{\mu^{SC}}{M}}\right)$ if the value of strong convexity parameter $\mu^{SC}>0$ is known. The novelty is that one can save linear convergence if $\frac{\mu^{PL}}{\mu^{SC}}$ is not known, but without square root in the scale factor.

    The second part presents modification of AGMsDR method for solving problems that allow alternating minimization (Alternating AGMsDR). The similar results are proved.

    As the result, we present adaptive accelerated methods that converge as $O\left(\min\left\lbrace\frac{M}{k^2},\,\left(1-{\frac{\mu^{PL}}{M}}\right)^{(k-1)}\right\rbrace\right)$ on a class of convex functions with $M$-Lipschitz-continuous gradient that satisfy Polyak – Lojasiewicz condition. Algorithms do not need values of $M$ and $\mu^{PL}$. If Polyak – Lojasiewicz condition does not hold, the convergence is $O\left(\frac1{k^2}\right)$, but no tuning needed.

    We also consider the adaptive catalyst envelope of non-accelerated gradient methods. The envelope allows acceleration up to $O\left(\frac1{k^2}\right)$. We present numerical comparison of non-accelerated adaptive gradient descent which is accelerated using adaptive catalyst envelope with AGMsDR, Alternating AGMsDR, APDAGD (Adaptive Primal-Dual Accelerated Gradient Descent) and Sinkhorn's algorithm on the problem dual to the optimal transport problem.

    Conducted experiments show faster convergence of alternating AGMsDR in comparison with described catalyst approach and AGMsDR, despite the same asymptotic rate $O\left(\frac1{k^2}\right)$. Such behavior can be explained by linear convergence of AGMsDR method and was tested on quadratic functions. Alternating AGMsDR demonstrated better performance in comparison with AGMsDR.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.