Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Представление инвариантной меры неприводимой цепи Маркова с дискретным временем и конечным пространством состояний множеством обратно ориентированных деревьев
Компьютерные исследования и моделирование, 2015, т. 7, № 2, с. 221-226Рассмотрена задача нахождения инвариантной меры неприводимой цепи Маркова с дискретным временем и конечным пространством состояний. Для такой цепи Маркова существует и единственна инвариантная мера, определенная с точностью до умножения на константу. Для каждого состояния эта инвариантная мера получена в виде суммы $n^{n−2}$ неотрицательных слагаемых, где $n$ — число состояний. Каждое слагаемое является произведением $n − 1$ условных вероятностей перехода. В стандартном представлении цепи Маркова ориентированным графом каждому состоянию ставится в соответствие вершина графа, а условной вероятности перехода — ориентированное ребро. В этом представлении каждое слагаемое в рассматриваемом выражении для инвариантной меры некоторого состояния взаимно-однозначно соответствует обратно ориентированному дереву с корнем в вершине, являющейся образом рассматриваемого состояния. Ребра ориентированы по направлению к корню. Дерево включает все вершины — образы состояний. Каждое слагаемое является произведением всех тех и только тех условных вероятностей перехода, образами которых являются ориентированные ребра соответствующего дерева.
Representation of an invariant measure of irreducible discrete-time Markov chain with a finite state space by a set of opposite directed trees
Computer Research and Modeling, 2015, v. 7, no. 2, pp. 221-226Просмотров за год: 1.A problem of finding of an invariant measure of irreducible discrete-time Markov chain with a finite state space is considered. There is a unique invariant measure for such Markov chain that can be multiplied by an arbitrary constant. A representation of a Markov chain by a directed graph is considered. Each state is represented by a vertex, and each conditional transition probability is represented by a directed edge. It is proved that an invariant measure for each state is a sum of $n^{n−2}$ non-negative summands, where $n$ is a cardinality of state space. Each summand is a product of $n − 1$ conditional transition probabilities and is represented by an opposite directed tree that includes all vertices. The root represents the considered state. The edges are directed to the root. This result leads to methods of analyses and calculation of an invariant measure that is based on a graph theory.
-
Признаки стохастической детерминированности автогенной сукцессии лесных экосистем в марковских моделях
Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 255-265В статье описывается метод моделирования хода сукцессии лесных экосистем до климаксовой стадии с помощью построения марковской цепи. Показаны возможности метода устанавливать закономерности ходов сукцессии в собственных временах формирования лесных экосистем. В отличие от традиционных методов моделирования сукцессии на основе смен типов растительности, за переходные стадии разрабатываемой модели приняты варианты сформированности вертикальной структуры лесных сообществ и их насыщенности позднесукцессионными видами. Длительность сукцессионных ходов из любого состояния устанавливается не в абсолютных временны́х единицах, а рассчитывается по средним числам шагов до попадания в климакс в единой временнóй шкале. Выявлено свойство восстанавливающейся растительности, определенное как признак стохастической детерминированности хода автогенной сукцессии. Приведены свидетельства того, что ход и темп лесной сукцессии стохастически детерминированы внутренними особенностями пространственной и популяционной организации сообществ.
Ключевые слова: моделирование хода сукцессии, марковская цепь, темп сукцессии, вертикальная структура сообществ, стохастический детерминизм, собственные времена формирования сообществ.
Marks of stochastic determinacy of forest ecosystem autogenous succession in Markov models
Computer Research and Modeling, 2016, v. 8, no. 2, pp. 255-265Просмотров за год: 2. Цитирований: 2 (РИНЦ).This article describes a method to model the course of forest ecosystem succession to the climax state by means of a Markov chain. In contrast to traditional methods of forest succession modelling based on changes of vegetation types, several variants of the vertical structure of communities formed by late-successional tree species are taken as the transition states of the model. Durations of succession courses from any stage are not set in absolute time units, but calculated as the average number of steps before reaching the climax in a unified time scale. The regularities of succession courses are revealed in the proper time of forest ecosystems shaping. The evidences are obtained that internal features of the spatial and population structure do stochastically determine the course and the pace of forest succession. The property of developing vegetation of forest communities is defined as an attribute of stochastic determinism in the course of autogenous succession.
-
Об эффективности методов максимального сечения в теории переноса излучения
Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 573-582В работе рассматриваются две модификации метода максимального сечения для решения стационарного уравнения переноса излучения в трехмерной неоднородной среде. Обе модификации основаны на применении метода Монте-Карло к суммированию ряда Неймана для решения уравнения переноса. Одна из них — традиционная, вторая — основана на использовании ветвящихся цепей Маркова. Проводится численное сравнение этих алгоритмов.
On the efficiency of the maximum cross section method in radiation transport theory
Computer Research and Modeling, 2013, v. 5, no. 4, pp. 573-582Просмотров за год: 4. Цитирований: 2 (РИНЦ).We consider two versions of the maximum cross section method for the solutions of the stationary equation of radiative transfer in dimensional inhomogeneous medium. Both are based on the application Monte-Carlo method to the summation of the Neumann series for the solution transport equation. First modification is traditional and second is based on the use of branching Markov chains. We carried out numerical comparison of these algorithms.
-
Системное моделирование, оценка и оптимизация рисков функционирования распределенных компьютерных систем
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1349-1359В статье рассматривается проблема надежности эксплуатации открытой интеграционной платформы, обеспечивающей взаимодействие различных программных комплексов моделирования режимов транспорта газа, с учетом предоставления доступа к ним, в том числе через тонких клиентов, по принципу «программное обеспечение как услуга». Математически описаны функционирование, надежность хранения, передачи информации и реализуемость вычислительного процесса системы, что является необходимым для обеспечения работы автоматизированной системы диспетчерского управления транспортом нефти и газа. Представлено системное решение вопросов моделирования работы интеграционной платформы и тонких клиентов в условиях неопределенности и риска на базе метода динамики средних теории марковских случайных процессов. Рассматривается стадия стабильной работы — стационарный режим работы цепи Маркова с непрерывным временем и дискретными состояниями, которая описывается системами линейных алгебраический уравнений Колмогорова–Чепмена, записанных относительно средних численностей (математических ожиданий) состояний объектов исследования. Объектами исследования являются как элементы системы, присутствующие в большом количестве (тонкие клиенты и вычислительные модули), так и единичные (сервер, сетевой менеджер (брокер сообщений), менеджер технологических схем). В совокупности они представляют собой взаимодействующие Марковские случайные процессы, взаимодействие которых определяется тем, что интенсивности переходов в одной группе элементов зависят от средних численностей других групп элементов.
Через средние численности состояний объектов и интенсивностей их переходов из состояния в состояние предлагается многокритериальная дисперсионная модель оценки риска (как в широком, так и узком смысле, в соответствии со стандартом МЭК). Риск реализации каждого состояния параметров системы вычисляется как среднеквадратическое отклонение оцениваемого параметра системы объектов (в данном случае — средние численности и вероятности состояний элементов открытой интеграционной платформы и облака) от их среднего значения. На основании определенной дисперсионной модели риска функционирования элементов системы вводятся модели критериев оптимальности и рисков функционирования системы в целом. В частности, для тонкого клиента рассчитываются риск недополучения выгоды от подготовки и обработки запроса, суммарный риск потерь, связанный только с непроизводительными состояниями элемента, суммарный риск всех потерь от всех состояний системы. Для полученной многокритериальной задачи оценки рисков предлагаются модели (схемы компромисса) выбора оптимальной стратегии эксплуатации.
Ключевые слова: многокритериальная оценка, риск, стратегия эксплуатации, динамика средних, стационарный режим цепи Маркова, облачные технологии, открытая интеграционная платформа.
System modeling, risks evaluation and optimization of a distributed computer system
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1349-1359The article deals with the problem of a distributed system operation reliability. The system core is an open integration platform that provides interaction of varied software for modeling gas transportation. Some of them provide an access through thin clients on the cloud technology “software as a service”. Mathematical models of operation, transmission and computing are to ensure the operation of an automated dispatching system for oil and gas transportation. The paper presents a system solution based on the theory of Markov random processes and considers the stable operation stage. The stationary operation mode of the Markov chain with continuous time and discrete states is described by a system of Chapman–Kolmogorov equations with respect to the average numbers (mathematical expectations) of the objects in certain states. The objects of research are both system elements that are present in a large number – thin clients and computing modules, and individual ones – a server, a network manager (message broker). Together, they are interacting Markov random processes. The interaction is determined by the fact that the transition probabilities in one group of elements depend on the average numbers of other elements groups.
The authors propose a multi-criteria dispersion model of risk assessment for such systems (both in the broad and narrow sense, in accordance with the IEC standard). The risk is the standard deviation of estimated object parameter from its average value. The dispersion risk model makes possible to define optimality criteria and whole system functioning risks. In particular, for a thin client, the following is calculated: the loss profit risk, the total risk of losses due to non-productive element states, and the total risk of all system states losses.
Finally the paper proposes compromise schemes for solving the multi-criteria problem of choosing the optimal operation strategy based on the selected set of compromise criteria.
-
Экспериментальное сравнение алгоритмов поиска вектора PageRank
Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 369-379Задача поиска PageRank вектора представляет большой научный и практический интерес ввиду своей применимости к работе современных поисковых систем. Несмотря на то, что данная задача сводится к поиску собственного вектора стохастической матрицы $P$, потребность в новых алгоритмах для ее решения обусловлена большими размерами входных данных. Для достижения не более чем линейного времени работы применяются различные рандомизированные методы, возвращающие ожидаемый ответ лишь с некоторой достаточно близкой к единице вероятностью. Нами рассматриваются два таких способа, сводящие задачу поиска вектора PageRank к задаче поиска равновесия в антагонистической матричной игре, которая затем решается с помощью алгоритма Григориадиса – Хачияна. При этом данная реализация эффективно работает в предположении о разреженности матрицы, подаваемой на вход. Насколько нам известно, до сих пор не было ни одной успешной реализации ни алгоритма Григориадиса – Хачияна, ни его применения к задаче поиска вектора PageRank. Данная статья ставит перед собой задачу восполнить этот пробел. В работе приводится описание двух версий алгоритма с псевдокодом и некоторые детали их реализации. Кроме того, в работе рассматривается другой вероятностный метод поиска вектора PageRank, а именно Markov chain Monte Carlo (MCMC), с целью сравнения результатов работы указанных алгоритмов на матрицах с различными значениями спектральной щели. Последнее представляет особый интерес, поскольку значение спектральной щели сильно влияет на скорость сходимости MCMC, и не оказывает никакого влияния на два других подхода. Сравнение проводилось на сгенерированных графах двух видов: цепочках и $d$-мерных кубах. Проведенные эксперименты, как и предсказывает теория, демонстрируют эффективность алгоритма Григориадиса – Хачияна по сравнению с MCMC для разреженных графов с маленьким значением спектральной щели. Весь код находится в открытом доступе, так чтобы все желающие могли воспроизвести полученные результаты самостоятельно, или же использовать данную реализацию в своих нуждах. Работа имеет чисто практическую направленность, никаких теоретических результатов авторами получено не было.
Experimental comparison of PageRank vector calculation algorithms
Computer Research and Modeling, 2023, v. 15, no. 2, pp. 369-379Finding PageRank vector is of great scientific and practical interest due to its applicability to modern search engines. Despite the fact that this problem is reduced to finding the eigenvector of the stochastic matrix $P$, the need for new algorithms is justified by a large size of the input data. To achieve no more than linear execution time, various randomized methods have been proposed, returning the expected result only with some probability close enough to one. We will consider two of them by reducing the problem of calculating the PageRank vector to the problem of finding equilibrium in an antagonistic matrix game, which is then solved using the Grigoriadis – Khachiyan algorithm. This implementation works effectively under the assumption of sparsity of the input matrix. As far as we know, there are no successful implementations of neither the Grigoriadis – Khachiyan algorithm nor its application to the task of calculating the PageRank vector. The purpose of this paper is to fill this gap. The article describes an algorithm giving pseudocode and some details of the implementation. In addition, it discusses another randomized method of calculating the PageRank vector, namely, Markov chain Monte Carlo (MCMC), in order to compare the results of these algorithms on matrices with different values of the spectral gap. The latter is of particular interest, since the magnitude of the spectral gap strongly affects the convergence rate of MCMC and does not affect the other two approaches at all. The comparison was carried out on two types of generated graphs: chains and $d$-dimensional cubes. The experiments, as predicted by the theory, demonstrated the effectiveness of the Grigoriadis – Khachiyan algorithm in comparison with MCMC for sparse graphs with a small spectral gap value. The written code is publicly available, so everyone can reproduce the results themselves or use this implementation for their own needs. The work has a purely practical orientation, no theoretical results were obtained.
-
Исследование времени достижения консенсуса в работе технических комитетов по стандартизации на основе регулярных марковских цепей
Компьютерные исследования и моделирование, 2015, т. 7, № 4, с. 941-950В статье построена математическая модель обеспечения консенсуса в работе технических комитетов по стандартизации (ТК), основанная на модели консенсуса, предложенной ДеГроотом. Проанализированы основные проблемы достижения консенсуса при разработке консенсусных стандартов в условиях предложенной модели. Представлены результаты статистического моделирования, характеризующие зависимость времени достижения консенсуса от числа членов ТК и их авторитарности. Показано, что увеличение числа экспертов ТК и их авторитарности негативно влияет на время достижения консенсуса и увеличивает разобщенность группы.
Ключевые слова: технические комитеты по стандартизации, консенсус, стандарты, регулярные марковские цепи, время достижения консенсуса.
Investigation of time to reach consensus on the work of technical committees on standardization based on regular Markov chains
Computer Research and Modeling, 2015, v. 7, no. 4, pp. 941-950Просмотров за год: 5. Цитирований: 8 (РИНЦ).In this paper construct the mathematical model for consensus in technical committees for standardization (TC), based on the consensus model proposed DeGroot. The basic problems of achieving consensus in the development of consensus standards in terms of the proposed model are discussed. The results of statistical modeling characterizing the dependence of time to reach consensus on the number of members of the TC and their authoritarianism are presented. It has been shown that increasing the number of TC experts and authoritarianism negative impact on the time to reach a consensus and increase fragmentation of the TC.
-
Моделирование достижения консенсуса в условиях доминирования в социальной группе
Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 1067-1078Во многих социальных группах, например в технических комитетах по стандартизации, на между- народном, региональном и национальных уровнях, в европейских общинах, управляющих экопоселени- ями, социальных общественных движениях (occupy), международных организациях, принятие решений опирается на консенсус членов группы. Вместо голосования, когда большинство получает победу над меньшинством, консенсус позволяет найти решение, которое каждый член группы поддерживает или как минимум считает приемлемым. Такой подход гарантирует, что будут учтены все мнения членов группы, их идеи и потребности. При этом отмечается, что достижение консенсуса требует значительного време- ни, поскольку необходимо обеспечить согласие внутри группы независимо от ее размера. Было показано, что в некоторых ситуациях число итераций (согласований, переговоров) весьма значительно. Более того, в процессе принятия решений всегда присутствует риск блокировки решения меньшинством в группе, что не просто затягивает время принятия решения, а делает его невозможным. Как правило, таким мень- шинством выступает один или два одиозных человека в группе. При этом в дискуссии такой член группы старается доминировать, оставаясь всегда при своем мнении, игнорируя позицию других коллег. Это при- водит к затягиванию процесса принятия решений, с одной стороны, и ухудшению качества консенсуса — с другой, поскольку приходится учитывать только мнение доминирующего члена группы. Для выхода из кризиса в этой ситуации было предложено принимать решение по принципу «консенсус минус один» или «консенсус минус два», то есть не учитывать мнение одного или двух одиозных членов группы.
В статье на основе моделирования консенсуса с использованием модели регулярных марковских цепей исследуется вопрос, насколько сокращается время принятия решения по правилу «консенсус минус один», когда не учитывается позиция доминирующего члена группы.
Общий вывод, который вытекает из результатов моделирования, сводится к тому, что эмпирическое правило принятия решений по принципу «консенсус минус один» имеет соответствующее математиче- ское обоснование. Результаты моделирования показали, что применение правила «консенсус минус один» позволяет сократить время достижения консенсуса в группе на 76–95 %, что важно для практики.
Среднее число согласований гиперболически зависит от средней авторитарности членов группы (без учета авторитарного), что означает возможность затягивания процесса согласования при высоких значениях авторитарности членов группы.
Ключевые слова: консенсус, консенсус минус один, социальные группы, доминирование, регулярные марковские цепи, время достижения консенсуса.
Modeling consensus building in conditions of dominance in a social group
Computer Research and Modeling, 2021, v. 13, no. 5, pp. 1067-1078In many social groups, for example, in technical committees for standardization, at the international, regional and national levels, in European communities, managers of ecovillages, social movements (occupy), international organizations, decision-making is based on the consensus of the group members. Instead of voting, where the majority wins over the minority, consensus allows for a solution that each member of the group supports, or at least considers acceptable. This approach ensures that all group members’ opinions, ideas and needs are taken into account. At the same time, it is noted that reaching consensus takes a long time, since it is necessary to ensure agreement within the group, regardless of its size. It was shown that in some situations the number of iterations (agreements, negotiations) is very significant. Moreover, in the decision-making process, there is always a risk of blocking the decision by the minority in the group, which not only delays the decisionmaking time, but makes it impossible. Typically, such a minority is one or two odious people in the group. At the same time, such a member of the group tries to dominate in the discussion, always remaining in his opinion, ignoring the position of other colleagues. This leads to a delay in the decision-making process, on the one hand, and a deterioration in the quality of consensus, on the other, since only the opinion of the dominant member of the group has to be taken into account. To overcome the crisis in this situation, it was proposed to make a decision on the principle of «consensus minus one» or «consensus minus two», that is, do not take into account the opinion of one or two odious members of the group.
The article, based on modeling consensus using the model of regular Markov chains, examines the question of how much the decision-making time according to the «consensus minus one» rule is reduced, when the position of the dominant member of the group is not taken into account.
The general conclusion that follows from the simulation results is that the rule of thumb for making decisions on the principle of «consensus minus one» has a corresponding mathematical justification. The simulation results showed that the application of the «consensus minus one» rule can reduce the time to reach consensus in the group by 76–95%, which is important for practice.
The average number of agreements hyperbolically depends on the average authoritarianism of the group members (excluding the authoritarian one), which means the possibility of delaying the agreement process at high values of the authoritarianism of the group members.
-
Математическая модель консенсуса в группе лояльных экспертов, построенная на основании регулярных марковских цепей
Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1381-1393Теоретическое исследование консенсуса дает возможность проанализировать различные ситуации, с которыми приходится сталкиваться в реальной жизни социальным группам, принимающим групповые решения, абстрагируясь от конкретных особенностей групп. Актуальным для практики представляется исследование динамики социальной группы, состоящей из лояльных экспертов, которые в процессе поиска консенсуса уступают друг другу. В этом случае возможны психологические ловушки типа ложного консенсуса или группового мышления, которые иногда могут приводить к управленческим решениям с тяжелыми последствиями.
В статье построена математическая модель консенсуса для группы лояльных экспертов на основе моделирования с использованием регулярных марковских цепей. Анализ модели показал, что с ростом лояльности (уменьшением авторитарности) членов группы время достижения консенсуса экспоненциально растет (увеличивается число согласований), что, видимо, связано с отсутствием у экспертов желания брать ответственность за принимаемое решение. Рост численности группы (при остальных прочих равных условиях) приводит к
– уменьшению числа согласований до консенсуса в условиях стремления к абсолютной лояльности членов, т. е. каждый дополнительный лояльный член все меньше добавляет группе «силы»;
– логарифмическому росту числа согласований в условиях роста средней авторитарности членов.
Показано, что в очень малой группе (два лояльных эксперта) время наступления консенсуса может вырасти более чем в 10 раз по сравнению с группой из пяти и более членов, что вызывает затягивание самого процесса достижения консенсуса. Выявлено, что в случае наличия группы из двух абсолютно лояльных членов консенсус недостижим.
Сделан обоснованный вывод о том, что консенсус в группе лояльных экспертов является особым (специальным) случаем консенсуса, поскольку зависимость времени достижения консенсуса от авторитарности экспертов и их числа в группе описывается иными формами связи, чем в случае обычной группы экспертов.
Ключевые слова: консенсус, ложный консенсус, групповое мышление, социальные группы, марковские цепи, время достижения консенсуса.
Mathematical consensus model of loyal experts based on regular Markov chains
Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1381-1393The theoretical study of consensus makes it possible to analyze the various situations that social groups that make decisions in this way have to face in real life, abstracting from the specific characteristics of the groups. It is relevant for practice to study the dynamics of a social group consisting of loyal experts who, in the process of seeking consensus, yield to each other. In this case, psychological “traps” such as false consensus or groupthink are possible, which can sometimes lead to managerial decisions with dire consequences.
The article builds a mathematical consensus model for a group of loyal experts based on modeling using regular Markov chains. Analysis of the model showed that with an increase in the loyalty (decrease in authoritarianism) of group members, the time to reach consensus increases exponentially (the number of agreements increases), which is apparently due to the lack of desire among experts to take part of the responsibility for the decision being made. An increase in the size of such a group leads (ceteris paribus):
– to reduce the number of approvals to consensus in the conditions of striving for absolute loyalty of members, i. e. each additional loyal member adds less and less “strength” to the group;
– to a logarithmic increase in the number of approvals in the context of an increase in the average authoritarianism of members. It is shown that in a small group (two people), the time for reaching consensus can increase by more than 10 times compared to a group of 5 or more members), in the group there is a transfer of responsibility for making decisions.
It is proved that in the case of a group of two absolutely loyal members, consensus is unattainable.
A reasonable conclusion is made that consensus in a group of loyal experts is a special (special) case of consensus, since the dependence of the time until consensus is reached on the authoritarianism of experts and their number in the group is described by different curves than in the case of a regular group of experts.
Keywords: consensus, false consensus, group think, social groups, Markov chains, time to reach consensus. -
Теоретическое моделирование достижения консенсуса в условиях коалиций на основе регулярных марковских цепей
Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1247-1256Часто решения в социальных группах принимается на основе консенсуса. Это касается, например, проведения экспертизы в техническом комитете по стандартизации (ТК) перед утверждением национального стандарта Росстандартом. Стандарт утверждается в том и только том случае, если обеспечен консенсус в ТК. Такой же подход к разработке стандартов принят практически во всех странах мира, а также на региональном и международном уровне. Ранее опубликованные работы авторов посвящены построению математической модели времени достижения консенсуса в технических комитетах по стандартизации в условиях варьирования числа членов ТК и уровня их авторитарности. Настоящее исследование является продолжением этих работ для случая образования коалиций в работе социальных групп, в том числе технических комитетов по стандартизации. В рамках модели показано, что при наличии коалиций консенсус не достижим. Однако коалиции, как правило, преодолеваются в ходе переговорного процесса, в против- ном случае число принятых стандартов было бы исключительно мало. В работе проанализированы факторы, которые оказывают влияние на преодоление коалиций: величина уступки и индекс влияния коалиции. На основе статистического моделирования регулярных марковских цепей исследуется их воздействие на время обеспечения консенсуса. Доказано, что время достижения консенсуса значимо зависит от величины односторонней уступки коалиции и слабо зависит от размеров коалиций. Построена регрессионная модель зависимости среднего числа согласований от величины уступки. Выявлено, что даже небольшая уступка влечет наступление консенсуса, увеличение размера уступки приводит (при прочих равных факторах) к резкому снижению времени до наступления консенсуса. Показано, что уступка бо́льшей коалиции в отношении малочисленной коалиции не требует в среднем бо́льшего времени до наступления консенсуса. Уступка авторитарного лидера в группе позволяет сократить число согласований и повысить качество консенсуса. Полученные результаты имеют практическую ценность для всех организационных структур, где возникновение коалиций влечет невозможность принятия решений в рамках достижения консенсуса и требует рассмотрения различных способов для выхода на консенсусное решение.
Ключевые слова: социальная группа, консенсус, стандарты, регулярные марковские цепи, время достижения консенсуса, коалиции.
Theoretical modeling consensus building in the work of standardization technical committees in coalitions based on regular Markov chains
Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1247-1256Often decisions in social groups are made by consensus. This applies, for example, to the examination in the technical committee for standardization (TC) before the approval of the national standard by Rosstandart. The standard is approved if and only if the secured consensus in the TC. The same approach to standards development was adopted in almost all countries and at the regional and international level. Previously published works of authors dedicated to the construction of a mathematical model of time to reach consensus in technical committees for standardization in terms of variation in the number of TC members and their level of authoritarianism. The present study is a continuation of these works for the case of the formation of coalitions that are often formed during the consideration of the draft standard to the TC. In the article the mathematical model is constructed to ensure consensus on the work of technical standardization committees in terms of coalitions. In the framework of the model it is shown that in the presence of coalitions consensus is not achievable. However, the coalition, as a rule, are overcome during the negotiation process, otherwise the number of the adopted standards would be extremely small. This paper analyzes the factors that influence the bridging coalitions: the value of the assignment and an index of the effect of the coalition. On the basis of statistical modelling of regular Markov chains is investigated their effects on the time to ensure consensus in the technical Committee. It is proved that the time to reach consensus significantly depends on the value of unilateral concessions coalition and weakly depends on the size of coalitions. Built regression model of dependence of the average number of approvals from the value of the assignment. It was revealed that even a small concession leads to the onset of consensus, increasing the size of the assignment results (with other factors being equal) to a sharp decline in time before the consensus. It is shown that the assignment of a larger coalition against small coalitions takes on average more time before consensus. The result has practical value for all organizational structures, where the emergence of coalitions entails the inability of decision-making in the framework of consensus and requires the consideration of various methods for reaching a consensus decision.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"