Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'Kolmogorov – Fokker – Planck equation':
Найдено статей: 3
  1. Резаев Р.О., Трифонов А.Ю., Шаповалов А.В.
    Система Эйнштейна−Эренфеста типа (0, M) и асимптотические решения многомерного нелинейного уравнения Фоккера−Планка−Колмогорова
    Компьютерные исследования и моделирование, 2010, т. 2, № 2, с. 151-160

    Рассмотрен формализм квазиклассического приближения относительно малого коэффициента диффузии D, D→0, для многомерного уравнения Фоккера−Планка−Колмогорова с нелокальным и нелинейным вектором сноса в классе траекторно-сосредоточенных функций. Получена динамическая система Эйнштейна−Эренфеста типа (0, M), описывающая движение точки, в окрестности которой локализованы квазиклассические асимптотические решения. Построено семейство квазиклассических асимптотик с точностью O(D(M+1)/2).

    Rezaev R.O., Trifonov A.Y., Shapovalov A.V.
    The Einstein−Ehrenfest system of (0, M)-type and asymptotical solutions of the multidimensional nonlinear FokkerPlanckKolmogorov equation
    Computer Research and Modeling, 2010, v. 2, no. 2, pp. 151-160

    Semiclassical approximation formalism is developed for the multidimensional FokkerPlanckKolmogorov equation with non-local and nonlinear drift vector with respect to a small diffusion coefficient D, D→0, in the class of trajectory concentrated functions. The Einstein−Ehrenfest system of (0, M)-type is obtained. A family of semiclassical solutions localized around a point driven by the Einstein−Ehrenfest system accurate to O(D(M+1)/2) is found.

    Просмотров за год: 2.
  2. Богомолов С.В.
    Стохастическая формализация газодинамической иерархии
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 767-779

    Математические модели газовой динамики и ее вычислительная индустрия, на наш взгляд, далеки от совершенства. Мы посмотрим на эту проблематику с точки зрения ясной вероятностной микромодели газа из твердых сфер, опираясь как на теорию случайных процессов, так и на классическую кинетическую теорию в терминах плотностей функций распределения в фазовом пространстве; а именно, построим сначала систему нелинейных стохастических дифференциальных уравнений (СДУ), а затем обобщенное случайное и неслучайное интегро-дифференциальное уравнение Больцмана с учетом корреляций и флуктуаций. Ключевыми особенностями исходной модели являются случайный характер интенсивности скачкообразной меры и ее зависимость от самого процесса.

    Кратко напомним переход ко все более грубым мезо-макроприближениям в соответствии с уменьшением параметра обезразмеривания, числа Кнудсена. Получим стохастические и неслучайные уравнения, сначала в фазовом пространстве (мезомодель в терминах СДУ по винеров- ским мерам и уравнения Колмогорова – Фоккера – Планка), а затем в координатном пространстве (макроуравнения, отличающиеся от системы уравнений Навье – Стокса и систем квазигазодинамики). Главным отличием этого вывода является более точное осреднение по скорости благодаря аналитическому решению стохастических дифференциальных уравнений по винеровской мере, в виде которых представлена промежуточная мезомодель в фазовом пространстве. Такой подход существенно отличается от традиционного, использующего не сам случайный процесс, а его функцию распределения. Акцент ставится на прозрачности допущений при переходе от одного уровня детализации к другому, а не на численных экспериментах, в которых содержатся дополнительные погрешности аппроксимации.

    Теоретическая мощь микроскопического представления макроскопических явлений важна и как идейная опора методов частиц, альтернативных разностным и конечно-элементным.

    Bogomolov S.V.
    Stochastic formalization of the gas dynamic hierarchy
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 767-779

    Mathematical models of gas dynamics and its computational industry, in our opinion, are far from perfect. We will look at this problem from the point of view of a clear probabilistic micro-model of a gas from hard spheres, relying on both the theory of random processes and the classical kinetic theory in terms of densities of distribution functions in phase space, namely, we will first construct a system of nonlinear stochastic differential equations (SDE), and then a generalized random and nonrandom integro-differential Boltzmann equation taking into account correlations and fluctuations. The key feature of the initial model is the random nature of the intensity of the jump measure and its dependence on the process itself.

    Briefly recall the transition to increasingly coarse meso-macro approximations in accordance with a decrease in the dimensionalization parameter, the Knudsen number. We obtain stochastic and non-random equations, first in phase space (meso-model in terms of the Wiener — measure SDE and the KolmogorovFokkerPlanck equations), and then — in coordinate space (macro-equations that differ from the Navier – Stokes system of equations and quasi-gas dynamics systems). The main difference of this derivation is a more accurate averaging by velocity due to the analytical solution of stochastic differential equations with respect to the Wiener measure, in the form of which an intermediate meso-model in phase space is presented. This approach differs significantly from the traditional one, which uses not the random process itself, but its distribution function. The emphasis is placed on the transparency of assumptions during the transition from one level of detail to another, and not on numerical experiments, which contain additional approximation errors.

    The theoretical power of the microscopic representation of macroscopic phenomena is also important as an ideological support for particle methods alternative to difference and finite element methods.

  3. Шпитонков М.И.
    Применение методики корреляционной адаптометрии в спортивных и медико-биологических исследованиях
    Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 345-354

    В работе излагаются подходы к математическому моделированию механизмов, лежащих в основе широко используемых в биологии и медицине методов корреляционной адаптометрии. Построение базируется на конструкциях, лежащих в основе описания структурированных биологических систем. Предполагается, что плотность распределения численности биологической популяции удовлетворяет уравнению Колмогорова–Фоккера–Планка. С использованием данной методики оценивается эффективность лечения больных с ожирением. Все пациенты, в зависимости от степени ожирения и характера сопутствующей патологии, были разделены на три группы. Показано уменьшение веса корреляционного графа, вычисленного на измеренных у пациентов показателях для трех групп пациентов, что характеризует эффективность проведенного лечения для всех исследуемых групп. Данная методика также была использована для оценки напряженности тренировочных нагрузок у гребцов академической гребли трех возрастных групп. Было показано, что с наибольшим напряжением работали спортсмены молодежной группы. Также с использованием методики корреляционной адаптометрии оценивается эффективность лечения заместительной гормональной терапии (ЗГТ) у женщин. Все пациентки, в зависимости от назначенного препарата, были разделены на четыре группы. При стандартном анализе динамики средних величин показателей было показано, что в ходе всего лечения наблюдалась нормализация средних показателей для всех групп пациенток. Однако с использованием методики корреляционной адаптометрии было получено, что в течение первых шести месяцев вес корреляционного графа снижался, а в течение вторых шести месяцев этот вес повышался для всех исследуемых групп. Это свидетельствует о чрезмерной продолжительности годового курса ЗГТ и целесообразности перехода к полугодовому курсу.

    Shpitonkov M.I.
    Application of correlation adaptometry technique to sports and biomedical research
    Computer Research and Modeling, 2017, v. 9, no. 2, pp. 345-354

    The paper outlines the approaches to mathematical modeling correlation adaptometry techniques widely used in biology and medicine. The analysis is based on models employed in descriptions of structured biological systems. It is assumed that the distribution density of the biological population numbers satisfies the equation of Kolmogorov-Fokker-Planck. Using this technique evaluated the effectiveness of treatment of patients with obesity. All patients depending on the obesity degree and the comorbidity nature were divided into three groups. Shows a decrease in weight of the correlation graph computed from the measured in the patients of the indicators that characterizes the effectiveness of the treatment for all studied groups. This technique was also used to assess the intensity of the training loads in academic rowing three age groups. It was shown that with the highest voltage worked with athletes for youth group. Also, using the technique of correlation adaptometry evaluated the effectiveness of the treatment of hormone replacement therapy in women. All the patients depending on the assigned drug were divided into four groups. In the standard analysis of the dynamics of mean values of indicators, it was shown that in the course of the treatment were observed normalization of the averages for all groups of patients. However, using the technique of correlation adaptometry it was found that during the first six months the weight of the correlation graph was decreasing and during the second six months the weight increased for all study groups. This indicates the excessive length of the annual course of hormone replacement therapy and the practicality of transition to a semiannual rate.

    Просмотров за год: 10.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.