Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'Euler−Poisson’s equations':
Найдено статей: 2
  1. Горр Г.В., Щетинина Е.К.
    Новая форма уравнений в моделировании движения тяжелого твердого тела
    Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 873-884

    В динамике тяжелого твердого тела с неподвижной точкой известны различные типы редуцированных уравнений. Поскольку уравнения Эйлера–Пуассона допускают три первых интеграла, то в первом подходе получение новых форм уравнений, как правило, основано на этих интегралах. С их помощью можно систему шести скалярных уравнений преобразовать к системе третьего порядка. Однако редуцированная система при указанном подходе будет иметь особенность в виде радикальных выражений относительно компонент вектора угловой скорости. Это обстоятельство препятствует эффективному применению численных и асимптотических методов исследования решения. Во втором подходе используют различные виды переменных задачи: углы Эйлера, переменные Гамильтона и другие. При таком подходе уравнения Эйлера–Пуассона редуцируются либо к системе дифференциальных уравнений второго порядка, либо к системе, для которой эффективны специальные методы. В статье применен метод нахождения приведенной системы, основанный на введении вспомогательной переменной. Эта переменная характеризует смешанное произведение вектора момента количества движения, вектора вертикали и единичного вектора барицентрической оси тела. Получена система четырех дифференциальных уравнений, два из которых являются линейными дифференциальными уравнениями. Данная система не имеет аналога и не содержит особенностей, что позволяет применять к ней аналитические и численные методы исследования. Указанная форма уравнений применена для анализа специального класса решений в случае, когда центр масс тела принадлежит барицентрической оси. Рассмотрен вариант, при котором сумма квадратов двух компонент вектора кинематического момента относительно небарицентрических осей постоянна. Доказано, что этот вариант имеет место только в решении В.А. Стеклова. Найденная форма уравнений Эйлера–Пуассона может быть применена к исследованию условий существования других классов решений. Определенная перспектива полученных уравнений состоит в записи всех решений, для которых центр масс лежит на барицентрической оси, в переменных данной статьи. Это позволяет провести классификацию решений уравнений Эйлера–Пуассона в зависимости от порядка инвариантных соотношений. Поскольку указанная в статье система уравнений не имеет особенностей, то она может рассматриваться при компьютерном моделировании с помощью численных методов.

    Gorr G.V., Shchetinina E.K.
    A new form of differential equations in modeling of the motion of a heavy solid
    Computer Research and Modeling, 2016, v. 8, no. 6, pp. 873-884

    The different types of the reduced equations are known in the dynamics a heavy rigid body with a fixed point. Since the EulerPoisson’s equations admit the three first integrals, then for the first approach the obtaining new forms of equations are usually based on these integrals. The system of six scalar equations can be transformed to a third-order system with them. However, in indicated approach the reduced system will have a feature as in the form of radical expressions a relatively the components of the angular velocity vector. This fact prevents the effective the effective application of numerical and asymptotic methods of solutions research. In the second approach the different types of variables in a problem are used: Euler’s angles, Hamilton’s variables and other variables. In this approach the EulerPoisson’s equations are reduced to either the system of second-order differential equations, or the system for which the special methods are effective. In the article the method of finding the reduced system based on the introduction of an auxiliary variable is applied. This variable characterizes the mixed product of the angular momentum vector, the vector of vertical and the unit vector barycentric axis of the body. The system of four differential equations, two of which are linear differential equations was obtained. This system has no analog and does not contain the features that allows to apply to it the analytical and numerical methods. Received form of equations is applied for the analysis of a special class of solutions in the case when the center of mass of the body belongs to the barycentric axis. The variant in which the sum of the squares of the two components of the angular momentum vector with respect to not barycentric axes is constant. It is proved that this variant exists only in the Steklov’s solution. The obtained form of EulerPoisson’s equations can be used to the investigation of the conditions of existence of other classes of solutions. Certain perspectives obtained equations consists a record of all solutions for which the center of mass is on barycentric axis in the variables of this article. It allows to carry out a classification solutions of EulerPoisson’s equations depending on the order of invariant relations. Since the equations system specified in the article has no singularities, it can be considered in computer modeling using numerical methods.

    Просмотров за год: 6.
  2. Лукьянцев Д.С., Афанасьев Н.Т., Танаев А.Б., Чудаев С.О.
    Численно-аналитическое моделирование гравитационного линзирования электромагнитных волн в случайно-неоднородной космической плазме
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 433-443

    Для интерпретации данных измерений астрофизических прецизионных инструментов нового поколения разработан аппарат численно-аналитического моделирования характеристик распространения электромагнитных волн в хаотической космической плазме с учетом эффектов гравитации. Задача распространения волн в искривленном (римановом) пространстве решена в евклидовом пространстве путем введения эффективного показателя преломления вакуума, выраженного через потенциал тяготения. Задавая различные модели плотности распределения массы астрофизических объектов и решая уравнение Пуассона, можно рассчитать гравитационный потенциал и вычислить эффективный показатель преломления вакуума. В предположении аддитивности вкладов различных объектов в общее гравитационное поле предложена приближенная модель эффективного показателя преломления. Считая пространственные масштабы показателя преломления много больше длины волны, расчет характеристик электромагнитных волн в поле тяготения астрофизических объектов проводится в приближении геометрической оптики. В основу численно-аналитического аппарата моделирования траекторных характеристик волн положены лучевые дифференциальные уравнения в форме Эйлера. Хаотические неоднородности космической плазмы заданы моделью пространственной корреляционной функции показателя преломления. Расчеты рефракционного рассеяния волн выполнены в приближении метода возмущений. Получены интегральные выражения для статистических моментов боковых отклонений лучей в картинной плоскости наблюдателя. С помощью аналитических преобразований интегралы для моментов сведены к системе обыкновенных дифференциальных уравнений первого порядка для совместного численного расчета средних и среднеквадратичных отклонений лучей. Приведены результаты численно-аналитического моделирования траекторной картины распространения электромагнитных волн в межзвездной среде с учетом воздействий полей тяготения космических объектов и рефракционного рассеяния волн на неоднородностях показателя преломления окружающей плазмы. На основе результатов моделирования сделана количественная оценка условий стохастического замывания эффектов гравитационного линзирования электромагнитных волн в различных частотных диапазонах. Показано, что рабочие частоты метрового диапазона длин волн представляют собой условную низкочастотную границу для наблюдений эффекта гравитационного линзирования в стохастической космической плазме. Предложенный аппарат численно-аналитического моделирования можно использовать для анализа структуры электромагнитного излучения квазаров, прошедшего группу галактик.

    Lukyantsev D.S., Afanasiev N.T., Tanaev A.B., Chudaev S.O.
    Numerical-analytical modeling of gravitational lensing of the electromagnetic waves in random-inhomogeneous space plasma
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 433-443

    Instrument of numerical-analytical modeling of characteristics of propagation of electromagnetic waves in chaotic space plasma with taking into account effects of gravitation is developed for interpretation of data of measurements of astrophysical precision instruments of new education. The task of propagation of waves in curved (Riemann’s) space is solved in Euclid’s space by introducing of the effective index of refraction of vacuum. The gravitational potential can be calculated for various model of distribution of mass of astrophysical objects and at solution of Poisson’s equation. As a result the effective index of refraction of vacuum can be evaluated. Approximate model of the effective index of refraction is suggested with condition that various objects additively contribute in total gravitational field. Calculation of the characteristics of electromagnetic waves in the gravitational field of astrophysical objects is performed by the approximation of geometrical optics with condition that spatial scales of index of refraction a lot more wavelength. Light differential equations in Euler’s form are formed the basis of numerical-analytical instrument of modeling of trajectory characteristic of waves. Chaotic inhomogeneities of space plasma are introduced by model of spatial correlation function of index of refraction. Calculations of refraction scattering of waves are performed by the approximation of geometrical optics. Integral equations for statistic moments of lateral deviations of beams in picture plane of observer are obtained. Integrals for moments are reduced to system of ordinary differential equations the firsts order with using analytical transformations for cooperative numerical calculation of arrange and meansquare deviations of light. Results of numerical-analytical modeling of trajectory picture of propagation of electromagnetic waves in interstellar space with taking into account impact of gravitational fields of space objects and refractive scattering of waves on inhomogeneities of index of refraction of surrounding plasma are shown. Based on the results of modeling quantitative estimation of conditions of stochastic blurring of the effect of gravitational lensing of electromagnetic waves at various frequency ranges is performed. It’s shown that operating frequencies of meter range of wavelengths represent conditional low-frequency limit for observational of the effect of gravitational lensing in stochastic space plasma. The offered instrument of numerical-analytical modeling can be used for analyze of structure of electromagnetic radiation of quasar propagating through group of galactic.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.