Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Оценка собственных частот крутильных колебаний композиционного нелинейно вязкоупругого вала
Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 421-430С целью обобщения уравнения крутильных колебаний на случай нелинейно деформируемых реологически активных валов в статье представлена методика линеаризации эффективной функции мгновенного деформирования материала. В работе рассматриваются слоистые и структурно неоднородные, в среднем изотропные валы из нелинейно вязкоупругих компонент. Методика заключается в определении аппроксимирующего модуля сдвига материала посредством минимизации среднеквадратического отклонения при приближении эффективной диаграммы мгновенного деформирования линейной функцией.
Представленная методика позволяет в аналитическом виде произвести оценку величин частот свободных колебаний слоистых и структурно неоднородных нелинейно вязкоупругих цилиндрических стержней. Это, в свою очередь, предоставляет возможность существенно сократить ресурсы при вибрационном анализе, а также отследить изменения значений собственных частот при изменении геометрических, физико-механических и структурных параметров валов, что особенно важно на начальных этапах моделирования и проектирования. Кроме того, в работе показано, что только выраженная нелинейность эффективного уравнения состояния материала оказывает значимое влияние на частоты свободных колебаний, и в некоторых случаях нелинейностью при определении собственных частот можно пренебречь.
В качестве уравнений состояния компонент композиционного материала в статье рассматриваются уравнения нелинейной наследственности с функциями мгновенного деформирования в виде билинейных диаграмм Прандтля. Для гомогенизации уравнений состояния слоистых цилиндрических стержней в работе применяются гипотезы Фойгта об однородности деформаций и Рейсса об однородности напряжений в объеме композиционного тела. При использовании данных предположений получены эффективные секущий и касательный модули сдвига, пределы пропорциональности, а также ядра ползучести и релаксации продольно, аксиально и поперечно-слоистых валов. Кроме того, в работе получены указанные эффективные характеристики структурно неоднородного, в среднем изотропного цилиндрического стержня с помощью ранее предложенного авторами метода гомогенизации, основанного на определении параметров деформирования материала по правилу смеси для уравнений состояния по Фойгту и Рейссу.
Ключевые слова: композиционный материал, гомогенизация, крутильные колебания, нелинейная вязкоупругость.Просмотров за год: 27. -
Идентификация параметров вязкоупругих моделей клетки на основе силовых кривых и вейвлет-преобразования
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1653-1672Механические свойства клеток эукариот играют важную роль в условиях жизненного цикла и при развитии патологических процессов. В работе обсуждается проблема идентификации и верификации параметров вязкоупругих конститутивных моделей на основе данных силовой спектроскопии клеток эукариот. Предлагается использовать одномерное непрерывное вейвлет-преобразование для расчета ядра релаксации. Приводятся аналитические выкладки и результаты численных расчетов, позволяющие на основе экспериментально установленных силовых кривых и теоретических зависимостей «напряжение – деформация» с применением алгоритмов вейвлет-дифференцирования получать аналогичные друг другу функции релаксации. Анализируются тестовые примеры, демонстрирующие корректности программной реализации предложенных алгоритмов. Рассматриваются модели клетки, на примере которых демонстрируется применение предложенной процедуры идентификации и верификации их параметров. Среди них структурно-механическая модель с параллельно соединенными дробными элементами, которая является на данный момент наиболее адекватной с точки зрения соответствия данным атомно-силовой микроскопии широкого класса клеток, и новая статистико-термодинамическая модель, которая не уступает в описательных возможностях моделям с дробными производными, но имеет более ясный физический смысл. Для статистико-термодинамической модели подробно описывается процедура ее построения, которая в себя включает следующее: введение структурной переменной, параметра порядка, для описания ориентационных свойств цитоскелета клетки; постановку и решение статистической задачи для ансамбля актиновых филаментов представительного объема клетки относительно данной переменной; установление вида свободной энергии, зависящей от параметра порядка, температуры и внешней нагрузки. Также предложено в качестве модели представительного элемента клетки использовать ориентационно-вязкоупругое тело. Согласно теории линейной термодинамики получены эволюционные уравнения, описывающие механическое поведение представительного объема клетки, которые удовлетворяют основным термодинамическим законам. Также поставлена и решена задача оптимизации параметров статистико-термодинамической модели клетки, которая может сопоставляется как с экспериментальными данными, так и с результатами симуляций на основе других математических моделей. Определены вязкоупругие характеристики клеток на основе сопоставления с литературными данными.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"