Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'электрофизические параметры':
Найдено статей: 4
  1. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1415-1418
  2. Ветлужский А.Ю.
    Анализ дисперсионных характеристик металлических фотонных кристаллов методом разложения
    Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1059-1068

    Рассматривается метод изучения дисперсионных характеристик фотонных кристаллов — сред с периодически меняющейся в пространстве диэлектрической проницаемостью. Метод основывается на представлении волновых функций и диэлектрической проницаемости периодической среды в виде рядов Фурье и последующей их подстановки в волновое уравнение, приводящей к формулировке дисперсионного уравнения. Пользуясь последним, для каждого значения волнового вектора можно определить набор собственных частот, каждая из которых, являясь непрерывной функцией волнового числа, образует отдельную дисперсионную кривую. Коэффициенты фурье-разложения диэлектрической проницаемости, зависящие от векторов обратной решетки фотонного кристалла, определяются на основе данных о геометрических характеристиках элементов, образующих кристалл, их электрофизических свойствах и плотности заполнения кристалла. Решение найденного дисперсионного уравнения позволяет получить полную информацию о количестве мод, распространяющихся в периодической структуре на различных частотах, и о возможности формирования в ней запрещенных зон — диапазонов частот, в пределах которых волновое распространение через фотонный кристалл невозможно. Основное внимание в работе уделяется приложению данного метода к анализу дисперсионных свойств металлических фотонных кристаллов. Сложности, возникающие в данном случае из-за наличия собственных дисперсионных свойств металлов, образующих элементы кристалла, преодолеваются аналитическим описанием их диэлектрической проницаемости, основывающимся на модели свободных электронов. В итоге формулируется дисперсионное уравнение, численное решение которого легко алгоритмизируется, что позволяет определять дисперсионные характеристики металлических фотонных кристаллов с произвольными параметрами. В работе сопоставляются полученные по данной методике результаты расчета дисперсионных диаграмм, характеризующих двумерные металлические фотонные кристаллы, с экспериментальными данными и численными результатами, полученными с использованием метода самосогласованных уравнений. Демонстрируется их хорошее согласие.

  3. Зейде К.М., Вардугина А.Ю., Марвин С.В.
    Быстрый метод анализа возмущения электромагнитного поля малыми сферическими рассеивателями
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1039-1050

    В данной работе рассматривается особая аппроксимация обобщенной формулы возмущения электромагнитного поля семейством электрически малых сферических неоднородностей. Задача, рассматриваемая в настоящей работе, возникает во множестве приложений технической электродинамики, радиолокации, подповерхностного зондирования и дефектоскопии. В общем случае она формулируются следующим образом: в некоторой точке возмущенного пространства необходимо определить амплитуду электромагнитного поля. Возмущение электромагнитных волн вызывается семейством электрически малых распределенных в пространстве рассеивателей. Источник электромагнитных волн располагается также в возмущенном пространстве. Задача решается введением допущения для дальнего поля рассеяния и через формулировку для эффективной поверхности рассеяния неоднородности. Это, в свою очередь, позволяет существенно убыстрить вычисления возмущенного электромагнитного поля семейством идентичных друг другу сферических неоднородностей с произвольными электрофизическими параметрами. Аппроксимация проверяется путем сравнения получаемых результатов с решением обобщенной формулы для возмущения электромагнитного поля. В данной работе рассматривается только прямая задача рассеяния, тем самым все параметры рассеивателей являются известными. В этом контексте можно утверждать, что формулировка соответствует корректно поставленной задаче и не подразумевает решение интегрального уравнения в обобщенной формуле. Одной из особенностью предложенного алгоритма является выделение характерной плоскости на границе пространства. Все точки наблюдения за состоянием системы принадлежат этой плоскости. Семейство рассеивателей располагается внутри области наблюдения, которая формируется этой поверхностью. Данный подход, кроме всего прочего, позволяет снять ряд ограничений на использование обобщенной формулировки для возмущенного электрического поля, например требование по удаленности неоднородностей друг от друга в пространстве распространения электромагнитных волн. Учет вклада каждого рассеивателя в семействе неоднородностей производится путем перехода к значениям их эффективных поверхностей рассеяния и дальнейшего их суммирования с учетом возникающих волновых эффектов, таких как интерференция и многократное отражение. В статье приводятся и описываются ограничения предложенного метода, а также рассматриваются возможные его модификации и дополнения.

  4. Создание компьютерного лабораторного стенда, позволяющего получать достоверные характеристики, которые могут быть приняты за действительные, с учетом погрешностей и шумов (в чем заключается главная отличительная черта вычислительного эксперимента от модельных исследований), является одной из основных проблем настоящей работы. В ней рассматривается следующая задача: имеется прямоугольный волновод в одномодовом режиме, на широкой стенке которого прорезано сквозное технологическое отверстие, через которое в полость линии передачи помещается образец для исследования. Алгоритм восстановления следующий: в лаборатории производится измерение параметров цепи (S11 и/или S21) в линии передачи с образцом. В компьютерной модели лабораторного стенда воссоздается геометрия образца и запускается итерационный процесс оптимизации (или свипирования) электрофи- зических параметров образца, маской которого являются экспериментальные данные, а критерием остановки — интерпретационная оценка близости к ним. Важно отметить, что разрабатываемая компьютерная модель, одновременно с кажущейся простотой, изначально является плохо обусловленной. Для постановки вычислительного эксперимента используется среда моделирования Comsol. Результаты проведенного вычислительного эксперимента с хорошей степенью точности совпали с результатами лабораторных исследований. Таким образом, экспериментальная верификация проведена для целого ряда значимых компонент, как компьютерной модели в частности, так и алгоритма восстановления параметров объекта в общем. Важно отметить, что разработанная и описанная в настоящей работе компьютерная модель может быть эффективно использована для вычислительного эксперимента по восстановлению полных диэлектрических параметров образца сложной геометрии. Обнаруженными могут также являться эффекты слабой бианизотропии, включая киральность, гиротропность и невзаимность материала. Полученная модель по определению является неполной, однако ее полнота является наивысшей из рассматриваемых вариантов, одновременно с этим результирующая модель оказывается хорошо обусловлена. Особое внимание в данной работе уделено моделированию коаксиально-волноводного перехода, показано, что применение дискретно-элементного подхода предпочтительнее, чем непосредственное моделирование геометрии СВЧ-узла.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.