Текущий выпуск Номер 3, 2024 Том 16

Все выпуски

Результаты поиска по 'экспоненциальное распределение':
Найдено статей: 12
  1. Поддубный В.В., Поликарпов А.А.
    Диссипативная стохастическая динамическая модель развития языковых знаков
    Компьютерные исследования и моделирование, 2011, т. 3, № 2, с. 103-124

    Предлагается диссипативная стохастическая динамическая модель эволюции языковых знаков, удовлетворяющая принципу «наименьшего действия» — одному из фундаментальных вариационных принципов природы. Модель предполагает пуассоновский характер потока рождения языковых знаков, экспоненциальное (показательное) распределение ассоциативно-семантического потенциала (АСП) знака и оперирует разностными стохастическими уравнениями специального вида для диссипативных процессов. Получаемые из модели распределения полисемии и частотно-ранговые распределения языковых знаков статистически значимо (по критерию Колмогорова–Смирнова) не отличаются от эмпирических распределений, полученных из представительных толковых и частотных словарей русского и английского языков.

    Просмотров за год: 1. Цитирований: 6 (РИНЦ).
  2. От редакции
    Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 379-381
    Просмотров за год: 36.
  3. От редакции
    Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 5-7
    Просмотров за год: 27.
  4. От редакции
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 5-8
  5. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 485-489
  6. Кожевников В.С., Матюшкин И.В., Черняев Н.В.
    Анализ основного уравнения физико-статистического подхода теории надежности технических систем
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 721-735

    Проведена верификация физико-статистического подхода теории надежности для простейших случаев, показавшая его правомочность. Представлено аналитическое решение одномерного основного уравнения физико-статистического подхода в предположении стационарной скорости деградации. С математической точки зрения это уравнение является известным уравнением непрерывности, где роль плотности вещества играет плотность функции распределения изделий в фазовом пространстве его характеристик, а роль скорости жидкости играет интенсивность (скорость) деградационных процессов. Последняя связывает общий формализм с конкретикой механизмов деградации. С помощью метода характеристик аналитически рассмотрены случаи постоянной по координате, линейной и квадратичной скоростей деградации. В первых двух случаях результаты соответствуют физической интуиции. При постоянной скорости деградации форма начального распределения сохраняется, а само оно равномерно сдвигается от центра. При линейной скорости деградации распределение либо сужается вплоть до узкого пика (в пределе сингулярного), либо расширяется, при этом максимум сдвигается на периферию с экспоненциально растущей скоростью. Форма распределения также сохраняется с точностью до параметров. Для начального нормального распределения аналитически получены координаты наибольшего значения максимума распределения при его возвратном движении.

    В квадратичном случае формальное решение демонстрирует контринтуитивное поведение. Оно заключается в том, что решение однозначно определено лишь на части бесконечной полуплоскости, обращается в нуль вместе со всеми производными на границе и неоднозначно при переходе за границу. Если продолжить его на другую область в соответствии с аналитическим решением, то оно имеет двухгорбый вид, сохраняет количество вещества и, что лишено физического смысла, периодично во времени. Если продолжить его нулем, то нарушается свойство консервативности. Аномальности квадратичного случая дается объяснение, хотя и нестрогое, через аналогию движения материальной точки с ускорением, пропорциональным квадрату скорости. Здесь мы имеем дело с математическим курьезом. Для всех случаев приведены численные расчеты. Дополнительно рассчитываются энтропия вероятностного распределения и функция надежности, а также прослеживается их корреляционная связь.

  7. Игнашин И.Н., Ярмошик Д.В.
    Модификации алгоритма Frank–Wolfe в задаче поиска равновесного распределения транспортных потоков
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 53-68

    В работе приведены различные модификации алгоритма Frank–Wolfe для задачи поиска равновесного распределения потоков. В качестве модели для экспериментов используется модель Бекмана. В этой статье в первую очередь уделяется внимание выбору направления базового шага алгоритма Frank–Wolfe (FW). Будут представлены алгоритмы: Conjugate Frank–Wolfe (CFW), Bi-conjugate Frank–Wolfe (BFW), Fukushima Frank–Wolfe (FFW). Каждой модификации соответствуют различные подходы к выбору этого направления. Некоторые из этих модификаций описаны в предыдущих работах авторов. В данной статье будут предложены алгоритмы N-conjugate Frank–Wolfe (NFW) и Weighted Fukushima Frank–Wolfe (WFFW). Эти алгоритмы являются некоторым идейным продолжением алгоритмов BFW и FFW. Таким образом, если первый алгоритм использовал на каждой итерации два последних направления предыдущих итераций для выбора следующего направления, сопряженного к ним, то предложенный алгоритм NFW использует $N$ предыдущих направлений. В случае же Fukushima Frank –Wolfe в качестве следующего направления берется среднее от нескольких предыдущих направлений. Соответственно этому алгоритму предложена модификация WFFW, использующая экспоненциальное сглаживание по предыдущим направлениям. Для сравнительного анализа были проведены эксперименты с различными модификациями на нескольких наборах данных, представляющих городские структуры и взятых из общедоступных источников. За метрику качества была взята величина относительного зазора. Результаты экспериментов показали преимущество алгоритмов, использующих предыдущие направления для выбора шага, перед классическим алгоритмом Frank–Wolfe. Кроме того, было выявлено улучшение эффективности при использовании более двух сопряженных направлений. Например, на многих датасетах модификация 3-conjugate FW сходилась наилучшим образом. Кроме того, предложенная модификация WFFW зачастую обгоняла FFW и CFW, хотя и проигрывала модификациям NFW.

  8. Герасимов А.Н., Шпитонков М.И.
    Математическая модель системы «паразит – хозяин» с распределенным временем сохранения иммунитета
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 695-711

    Пандемия COVID-19 вызвала рост интереса к математическим моделям эпидемического процесса, так как только статистический анализ заболеваемости не позволяет проводить среднесрочное прогнозирование в условиях быстро меняющейся ситуации.

    Среди специфичных особенностей COVID-19, которые нужно учитывать в математических моделях, можно отметить гетерогенность возбудителя, неоднократные смены доминирующего варианта SARS-CoV-2 и относительную кратковременность постинфекционного иммунитета.

    В связи с этим были аналитически изучены решения системы дифференциальных уравнений для модели класса SIR с гетерогенной длительностью постинфекционного иммунитета, а также проведены численные расчеты для динамики системы при средней длительности постинфекционного иммунитета порядка года.

    Для модели класса SIR с гетерогенной длительностью постинфекционного иммунитета было доказано, что любое решение можно неограниченно продолжать по времени в положительную сторону без выхода за область определения системы.

    Для контактного числа $R_0 \leqslant 1$ все решения стремятся к единственномут ривиальному стационарному решению с нулевой долей инфицированных, а для $R_0 > 1$ кроме тривиального решения существует и нетривиальное стационарное решение с ненулевыми долями инфицированных и восприимчивых. Были доказаны существование и единственность нетривиального стационарного решения при $R_0 > 1$, а также доказано, что оно является глобальным аттрактором.

    Также для нескольких вариантов гетерогенности были вычислены собственные числа для скорости экспоненциальной сходимости малых отклонений от нетривиального стационарного решения.

    Получено, что при значениях контактного числа, соответствующих COVID-19, фазовая траектория имеет вид скручивающейся спирали с длиной периода порядка года.

    Это соответствует реальной динамике заболеваемости COVID-19, при которой после нескольких месяцев роста заболеваемости начинается период его падения. При этом второй волны заболеваемости меньшей амплитуды, что предсказывала модель, не наблюдалось, так как на протяжении 2020–2023 годов примерно каждые полгода появлялся новый вариант SARS-CoV-2, имеющий большую заразность, чем предыдущий, в результате чего новый вариант вытеснял предыдущий и становился доминирующим.

  9. Белобородова Е.И., Тамм М.В.
    О некоторых свойствах коротковолновой статистики временных рядов FOREX
    Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 657-669

    Финансовая математика является одним из наиболее естественных приложений для статистического анализа временных рядов. Действительно, финансовые временные ряды являются порождением одновременной деятельности большого числа различных экономических агентов, что дает основания ожидать, что к ним могут быть применимы методы статистической физики и теории случайных процессов.

    В настоящей работе проведен статистический анализ временных рядов для пар валют на рынке FOREX. Особый интерес представляет сравнение поведения временного ряда как функции, с одной стороны, физического времени и, с другой стороны, условного торгового времени, измеряемого в числе элементарных актов изменения цены (тиков). Экспериментально наблюдаемая статистика рассмотренных временных рядов (пар валют «евро–доллар» для первых половин 2007 и 2009 годов и «британский фунт–доллар» для 2007 года) радикально отличается в зависимости от выбора способа измерения времени. Так, при измерении времени в единицах тиков распределение приращений цены может быть хорошо описано нормальным распределением уже на масштабе порядка десяти тиков. При этом при измерении приращений цены как функции реального физического времени распределение приращений продолжает радикально отличаться от нормального, вплоть до масштабов порядка минут и даже часов.

    Для объяснения этого явления нами исследованы статистические свойства элементарных приращений по цене и по времени. В частности, показано, что распределение времени между тиками для всех трех рассмотренных временных рядов имеет длинные (1-2 порядка по времени) степенные хвосты с экспоненциальным обрезанием на больших временах. Получены приближенные выражения для распределений времен ожидания для всех трех рассмотренных случаев. Другие статистические характеристики временного ряда (распределение элементарных изменений цены, парные корреляционные функции для приращений цены и для времен ожидания) демонстрируют достаточно простое поведение. Таким образом, именно аномально широкое распределение времен ожидания играет наиболее важную роль в наблюдаемом отклонении распределения приращений от нормального. В связи с этим результатом мы обсуждаем возможность применения модели случайного процесса с непрерывным временем (continuous time random walk, CTRW) для описания временных рядов FOREX.

    Просмотров за год: 10.
  10. Недбайло Ю.А., Сурченко А.В., Бычков И.Н.
    Снижение частоты промахов в неинклюзивный кэш с инклюзивным справочником многоядерного процессора
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 639-656

    Хотя эпоха экспоненциального роста производительности компьютерных микросхем закончилась, даже настольные процессоры общего назначения сегодня имеют 16 и больше ядер. Поскольку пропускная способность памяти DRAM растет не с такой скоростью, как вычислительная мощность ядер, разработчики процессоров должны искать пути уменьшения частоты обменов с памятью на одну инструкцию. Непосредственным путем к этому является снижение частоты промахов в кэш последнего уровня. Предполагая уже реализованной схему «неинклюзивный кэш с инклюзивным справочником» (NCID), три способа дальнейшего снижения частоты промахов были исследованы.

    Первый способ — это достижение более равномерного использования банков и наборов кэша применением хэш-функций для интерливинга и индексирования. В экспериментах в тестах SPEC CPU2017 refrate, даже простейшие хэш-функции на основе XOR показали увеличение производительности на 3,2%, 9,1% и 8,2% в конфигурациях процессора с 16, 32 и 64 ядрами и банками общего кэша, сравнимое с результатами для более сложных функций на основе матриц, деления и CRC.

    Вторая оптимизация нацелена на уменьшение дублирования на разных уровнях кэшей путем автоматического переключения на эксклюзивную схему, когда она выглядит оптимальной. Известная схема этого типа, FLEXclusion, была модифицирована для использования в NCID-кэшах и показала улучшение производительности в среднемна 3,8%, 5,4% и 7,9% для 16-, 32- и 64-ядерных конфигураций.

    Третьей оптимизацией является увеличение фактической емкости кэша использованием компрессии. Частота сжатия недорогим и быстрыма лгоритмом B DI*-HL (Base-Delta-Immediate Modified, Half-Line), разработанным для NCID, была измерена, и соответствующее увеличение емкости кэша дало около 1% среднего повышения производительности.

    Все три оптимизации могут сочетаться и продемонстрировали прирост производительности в 7,7%, 16% и 19% для конфигураций с 16, 32 и 64 ядрами и банками соответственно.

Страницы: следующая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.