Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'численное решение':
Найдено статей: 293
  1. Невмержицкий Я.В.
    Применение метода линий тока для ускорения расчетов неизотермической нелинейной фильтрации
    Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 709-728

    Работа посвящена численному моделированию плоской неизотермической нелинейной фильтрации в пористой среде. Рассматривается двумерная нестационарная задача течения высоковязкой нефти, воды и пара с фазовыми переходами. Нефтяная фаза представлена двумя псевдокомпонентами: легкой и тяжелой фракциями, которые, как и водный компонент, могут присутствовать в газовой фазе. Нефть проявляет вязкопластическую реологию, ее фильтрация не подчиняется классическому линейному закону Дарси. При моделировании учтена не только зависимость плотности и вязкости флюидов от температуры, но и улучшение реологических свойств нефти с ростом температуры.

    Для численного решения задачи применен метод линий тока с расщеплением по физическим процессам, заключающийся в отделении конвективного переноса, направленного вдоль скорости фильтрации, от теплопроводности и гравитации. Предложен новый подход применения метода линий тока, позволяющий корректно моделировать задачи нелинейной фильтрации с реологией, зависящей от температуры. Суть этого алгоритма заключается в рассмотрении процесса интегрирования как совокупности квазиравновесных состояний, которые достигаются путем решения системы на глобальной сетке и между которыми решение проводится на сетке из линий тока. Использование метода линий тока позволяет не только ускорить расчеты фильтрации, но и получить физически достоверную картину решения, так как интегрирование системы происходит на сетке, совпадающей с направлением течения флюидов.

    Помимо метода линий тока, в работе представлен алгоритм учета негладких коэффициентов, возникающих при решении уравнения течения вязкопластической нефти. Использование этого алгоритма позволяет сохранить достаточно большой шаг по времени и не изменяет физическую картину решения.

    Полученные результаты сопоставлены с известными аналитическими решениями, а также с результатами, полученными при расчете в коммерческом пакете. Анализ проведенных тестовых расчетов на сходимость по количеству линий тока, а также на разных сетках на линиях тока обосновывает применимость предлагаемого алгоритма, а уменьшение времени расчета, по сравнению с традиционными методами, демонстрирует практическую значимость этого подхода.

    Просмотров за год: 18.
  2. Соколов А.В., Мамкин В.В., Авилов В.К., Тарасов Д.Л., Курбатова Ю.А., Ольчев А.В.
    Применение метода сбалансированной идентификации для заполнения пропусков в рядах наблюдений за потоками СО2 на сфагновом верховом болоте
    Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 153-171

    В работе рассматривается применение метода сбалансированной идентификации для построения многофакторной функциональной зависимости нетто СО2-обмена (NEE) от факторов внешней среды и ее дальнейшего использования для заполнения пропусков в рядах наблюдений за потоками СО2 на верховом сфагновом болоте в Тверской области. Измерения потоков на болоте проводились с помощью метода турбулентных пульсаций в период с августа по ноябрь 2017 года. Из-за дождливых погодных условий и высокой повторяемости периодов с низкой турбулентностью на протяжении всего периода наблюдений доля пропусков в измерениях NEE на исследуемом болоте превысила 40%. Разработанная для заполнения пропусков модель описывает NEE верхового болота как разность экосистемного дыхания (RE) и валовой первичной продукции (GPP) и учитывает зависимость этих параметров от приходящей суммарной солнечной радиации (Q), температуры почвы (T), дефицита упругости водяного пара (VPD) и уровня болотных вод (WL). Используемый для этой цели метод сбалансированной идентификации основан на поиске оптимального соотношения между простотой модели и точностью повторения измерений — соотношения, доставляющего минимум оценке погрешности моделирования, полученной методом перекрестного оценивания. Полученные численные решения обладают минимально необходимой нелинейностью (кривизной), что обеспечивает хорошие интерполяционные и экстраполяционные свойства построенных моделей, необходимые для восполнения недостающих данных по потокам. На основе проведенного анализа временной изменчивости NEE и факторов внешней среды была выявлена статистически значимая зависимость GPP болота от Q, T и VPD, а RE — от T и WL. При этом погрешность применения предложенного метода для моделирования среднесуточных данных NEE составила менее 10%, а точность выполненных оценок NEE была выше, чем у модели REddyProc, учитывающей влияние на NEE меньшего числа внешних факторов. На основе восстановленных непрерывных рядов данных по NEE была проведена оценка масштабов внутрисуточной и межсуточной изменчивости NEE и получены интегральные оценки потоков СО2 исследуемого верхового болота для выбранного летне-осеннего периода. Было показано, что если в августе 2017 года на исследуемом болоте скорость фиксации СО2 растительным покровом существенно превышала величину экосистемного дыхания, то, начиная с сентября, на фоне снижения GPP исследуемое болото превратилось в устойчивый источник СО2 для атмосферы.

    Просмотров за год: 19.
  3. Статья посвящена численному исследованию ударно-волновых течений в неоднородных средах — газовзвесях. В данной работе применяется двухскоростная двухтемпературная модель, в которой дисперсная компонента смеси имеет свою скорость и температуру. Для описания изменения концентрации дисперсной компоненты решается уравнение сохранения «средней плотности». В данном исследовании учитывались межфазное тепловое взаимодействие и межфазный обмен импульсом. Математическая модель позволяет описывать несущею фазу смеси как вязкую, сжимаемою и теплопроводную среду. Система уравнений решалась с помощью явного конечно-разностного метода Мак-Кормака второго порядка точности. Для получения монотонного численного решения к сеточной функции применялась схема нелинейной коррекции. В задаче ударно-волнового течения для составляющих скорости задавались однородные граничные условия Дирихле, для остальных искомых функций задавались граничные условия Неймана. В численных расчетах для того, чтобы выявить зависимость динамики всей смеси от свойств твердой компоненты, рассматривались различные параметры дисперсной фазы — объемное содержание, а также линейный размер дисперсных включений. Целью исследований было определить, каким образом свойства твердых включений влияют на параметры динамики несущей среды — газа. Исследовалось движение неоднородной среды в ударной трубе — канале, разделенном на две части; давление газа в одном из отсеков канала имело большее значение, чем в другом. В статье моделировались движение прямого скачка уплотнения из камеры высокого давления в камеру низкого давления, заполненную запыленной средой, последующее отражение ударной волны от твердой поверхности. Анализ численных расчетов показал, что уменьшение линейного размера частиц газовзвеси и увеличение физической плотности материала, из которого состоят частицы, приводят к формированию более интенсивной отраженной ударной волны с большей температурой и плотностью газа, а также меньшей скоростью движения отраженного возмущения и меньшей скоростью спутного потока газа в отраженной волне.

  4. Лобачева Л.В., Борисова Е.В.
    Моделирование процессов миграции загрязнений от свалки твердых бытовых отходов
    Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 369-385

    В статье представлены результаты исследования процессов миграции загрязнений от свалки твердых бытовых отходов (ТБО), расположенной в водоохранной зоне озера Селигер. Для изучения особенностей распространения загрязняющих веществ и определения миграционных параметров проведен комплекс полевых и лабораторных исследований в районе расположения свалки. Построена математическая модель, описывающая физико-химические процессы миграции веществ в почвогрунтовой толще. Процесс движения загрязняющих веществ обуславливается разнообразными факторами, оказывающими существенное влияние на миграцию ингредиентов ТБО, основными из которых являются: конвективный перенос, диффузия и сорбционные процессы, которые учтены в математической постановке задачи. Модифицированная математическая модель отличается от известных аналогов учетом ряда параметров, отражающих снижение концентрации ионов аммонийного и нитратного азота в грунтовых водах (транспирация корнями растений, разбавление инфильтрационными водами и т. д.). Представлено аналитическое решение по оценке распространения загрязнений от свалки ТБО. На основе математической модели построен комплекс имитационных моделей, который позволяет получить численное решение частных задач: вертикальной и горизонтальной миграции веществ в подземном потоке. В ходе выполнения численных экспериментов, получения аналитических решений, а также на основе данных полевых и лабораторных исследований изучена динамика распределения загрязнений в толще объекта исследования до озера. Сделан долгосрочный прогноз распространения загрязнений от свалки. В результате компьютерных и модельных экспериментов установлено, что при миграции загрязнений от свалки можно выделить ряд зон взаимодействия чистых грунтовых вод с загрязненными подземными водами, каждая из которой характеризуется различным содержанием загрязняющих веществ. Данные вычислительных экспериментов и аналитических расчетов согласуются с результатами полевых и лабораторных исследований объекта, что дает основание рекомендовать предлагаемые модели для прогнозирования миграции загрязнений от свалки ТБО. Анализ результатов моделирования миграции загрязнений позволяет обосновать численные оценки увеличения концентрации ионов $NH_4^+$ и $NO_3^-$ со временем функционирования свалки. Выявлено, что уже через 100 лет после начала существования свалки токсичные компоненты фильтрата заполнят все поровое пространство от свалки до озера, что приведет к существенному ухудшению экосистемы озера Селигер.

  5. Зейде К.М., Вардугина А.Ю., Марвин С.В.
    Быстрый метод анализа возмущения электромагнитного поля малыми сферическими рассеивателями
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1039-1050

    В данной работе рассматривается особая аппроксимация обобщенной формулы возмущения электромагнитного поля семейством электрически малых сферических неоднородностей. Задача, рассматриваемая в настоящей работе, возникает во множестве приложений технической электродинамики, радиолокации, подповерхностного зондирования и дефектоскопии. В общем случае она формулируются следующим образом: в некоторой точке возмущенного пространства необходимо определить амплитуду электромагнитного поля. Возмущение электромагнитных волн вызывается семейством электрически малых распределенных в пространстве рассеивателей. Источник электромагнитных волн располагается также в возмущенном пространстве. Задача решается введением допущения для дальнего поля рассеяния и через формулировку для эффективной поверхности рассеяния неоднородности. Это, в свою очередь, позволяет существенно убыстрить вычисления возмущенного электромагнитного поля семейством идентичных друг другу сферических неоднородностей с произвольными электрофизическими параметрами. Аппроксимация проверяется путем сравнения получаемых результатов с решением обобщенной формулы для возмущения электромагнитного поля. В данной работе рассматривается только прямая задача рассеяния, тем самым все параметры рассеивателей являются известными. В этом контексте можно утверждать, что формулировка соответствует корректно поставленной задаче и не подразумевает решение интегрального уравнения в обобщенной формуле. Одной из особенностью предложенного алгоритма является выделение характерной плоскости на границе пространства. Все точки наблюдения за состоянием системы принадлежат этой плоскости. Семейство рассеивателей располагается внутри области наблюдения, которая формируется этой поверхностью. Данный подход, кроме всего прочего, позволяет снять ряд ограничений на использование обобщенной формулировки для возмущенного электрического поля, например требование по удаленности неоднородностей друг от друга в пространстве распространения электромагнитных волн. Учет вклада каждого рассеивателя в семействе неоднородностей производится путем перехода к значениям их эффективных поверхностей рассеяния и дальнейшего их суммирования с учетом возникающих волновых эффектов, таких как интерференция и многократное отражение. В статье приводятся и описываются ограничения предложенного метода, а также рассматриваются возможные его модификации и дополнения.

  6. Русяк И.Г., Тененев В.А.
    К вопросу о численном моделировании внутренней баллистики для трубчатого заряда в пространственной постановке
    Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 993-1010

    Для трубчатых пороховых элементов большого удлинения, используемых в артиллерийских метательных зарядах, имеют место условия неравномерного горения. Здесь необходимо параллельно рассматривать процессы горения и движения пороховых газов внутри и вне каналов пороховых трубок. Без этого невозможно адекватно поставить и решить задачи о воспламенении, эрозионном горении и напряженно-деформированном состоянии трубчатых пороховых элементов в процессе выстрела. В работе представлена физико-математическая постановка основной задачи внутренней баллистики артиллерийского выстрела для заряда, состоящего из совокупности пороховых трубок. Горение и движение пучка пороховых трубок по каналу ствола моделируются эквивалентным трубчатым зарядом всестороннего горения. Площади торца и сечения канала такого заряда (эквивалентной трубки) равны сумме площадей торцов и сечений каналов пороховых трубок соответственно. Поверхность горения канала равна сумме внутренних поверхностей трубок в пучке. Внешняя поверхность горения эквивалентной трубки равна сумме внешних поверхностей трубок в пучке. Предполагается, что эквивалентная трубка движется по оси канала ствола. Скорость движения эквивалентного трубчатого заряда и его текущее положение определяются из второго закона Ньютона. Для расчета параметров течения использованы двумерные осесимметричные уравнения газовой динамики, для решения которых строится осесимметричная ортогонализированная разностная сетка, адаптирующаяся к условиям течения. При перемещении и горении трубки разностная сетка перестраивается с учетом изменяющихся областей интегрирования. Для численного решения системы газодинамических уравнений применяется метод контрольного объема. Параметры газа на границах контрольных объемов определяются с использованием автомодельного решения задачи о распаде произвольного разрыва С.К. Годунова. Разработанная методика использована при расчетах внутрибаллистических параметров артиллерийского выстрела. Данный подход рассмотрен впервые и позволяет по-новому подойти к проектированию трубчатых артиллерийских зарядов, поскольку позволяет получить необходимую информацию в виде полей скорости и давления пороховых газов для расчета процесса постепенного воспламенения, нестационарного эрозионного горения, напряженно-деформированного состояния и прочности пороховых элементов при выстреле. Представлены временные зависимости параметров внутрибаллистического процесса и распределения основных параметров течения продуктов горения в различные моменты времени.

  7. Башкирцева И.А., Перевалова Т.В., Ряшко Л.Б.
    Метод стохастической чувствительности в анализе динамических трансформаций в модели «две жертвы – хищник»
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1343-1356

    Данная работа посвящена исследованию проблемы моделирования и анализа сложных колебательных режимов, как регулярных, так и хаотических, в системах взаимодействующих популяций в присутствии случайных возмущений. В качестве исходной концептуальной детерминированной модели рассматривается вольтерровская система трех дифференциальных уравнений, описывающая динамику популяций жертв двух конкурирующих видов и хищника. Данная модель учитывает следующие ключевые биологические факторы: естественный прирост жертв, их внутривидовую и межвидовую конкуренцию, вымирание хищников в отсутствие жертв, скорость выедания жертв хищником, прирост популяции хищника вследствие выедания жертв, интенсивность внутривидовой конкуренции в популяции хищника. В качестве бифуркационного параметра используется скорость роста второй популяции жертв. На некотором интервале изменения этого параметра система демонстрирует большое разнообразие динамических режимов: равновесных, колебательных и хаотических. Важной особенностью этой модели является мультистабильность. В данной работе мы фокусируемся на изучении параметрической зоны тристабильности, когда в системе сосуществуют устойчивое равновесие и два предельных цикла. Такая биритмичность в присутствии случайных возмущений порождает новые динамические режимы, не имеющие аналогов в детерминированном случае. Целью статьи является детальное изучение стохастических явлений, вызванных случайными флуктуациями скорости роста второй популяции жертв. В качестве математической модели таких флуктуаций мы рассматриваем белый гауссовский шум. Методами прямого численного моделирования решений соответствующей системы стохастических дифференциальных уравнений выявлены и описаны следующие феномены: однонаправленные стохастические переходы с одного цикла на другой; триггерный режим, вызванный переходами между циклами; индуцированный шумом переход с циклов на равновесие, отвечающее вымиранию популяции хищника и второй жертвы. В статье представлены результаты анализа этих явлений с помощью показателей Ляпунова, выявлены параметрические условия переходов от порядка к хаосу и от хаоса к порядку. Для аналитического исследования таких вызванных шумом многоэтапных переходов были применены техника функций стохастической чувствительности и метод доверительных областей. В статье показано, как этот математический аппарат позволяет спрогнозировать интенсивность шума, приводящего к качественным трансформациям режимов стохастической популяционной динамики.

  8. Рассматривается нелинейная краевая задача водородопроницаемости, соответствующая следующему эксперименту. Нагретая до достаточно высокой температуры мембрана из исследуемого конструкционного материала служит перегородкой вакуумной камеры. После предварительного вакуумирования и практически полной дегазации на входной стороне создается постоянное давление газообразного (молекулярного) водорода. С выходной стороны в условиях вакуумирования с помощью масс-спектрометра определяется проникающий поток.

    Принята линейная модель зависимости коэффициента диффузии растворенного атомарного водорода в объеме от концентрации, температурная зависимость в соответствии с законом Аррениуса. Поверхностные процессы растворения и сорбции-десорбции учтены в форме нелинейных динамических краевых условий (дифференциальные уравнения динамики поверхностных концентраций атомарного водорода). Математическая особенность краевой задачи состоит в том, что производные по времени от концентраций входят как в уравнение диффузии, так и в граничные условия с квадратичной нелинейностью. В терминах общей теории функционально-дифференциальных уравнений это приводит к так называемым уравнениям нейтрального типа и требует разработки более сложного математического аппарата. Представлен итерационный вычислительный алгоритм второго (повышенного) порядка точности решения соответствующей нелинейной краевой задачи на основе явно-неявных разностных схем. Явная составляющая применяется к более медленным подпроцессам, что позволяет на каждом шаге избегать решения нелинейной системы уравнений.

    Приведены результаты численного моделирования, подтверждающие адекватность модели экспериментальным данным. Определены степени влияния вариаций параметров водородопроницаемости («производные») на проникающий поток и распределение концентрации атомов H по толщине образца, что важно, в частности, для задач проектирования защитных конструкций от водородного охрупчивания и мембранных технологий получения особо чистого водорода. Вычислительный алгоритм позволяет использовать модель и при анализе экстремальных режимов для конструкционных материалов (перепады давления, высокие температуры, нестационарный нагрев), выявлять лимитирующие факторы при конкретных условиях эксплуатации и экономить на дорогостоящих экспериментах (особенно это касается дейтерий-тритиевых исследований).

  9. Разработана двумерная математическая модель для оценки напряжений в сварных соединениях, формируемых при многопроходной сварке многослойных сталей. Основой модели является система уравнений, которая включает вариационное уравнение Лагранжа инкрементальной теории пластичности и вариационное уравнение теплопроводности, выражающее принцип М. Био. Вариационно-разностным методом решается задача теплопроводности для расчета нестационарного температурного поля, а затем на каждом шаге по времени – квазистатическая задача термопластичности. Разностная схема построена на треугольных сетках, что дает некоторое повышение точности при описании положения границ раздела структурных элементов.

    Просмотров за год: 4. Цитирований: 6 (РИНЦ).
  10. Заика Ю.В., Родченкова Н.И., Сидоров Н.И.
    Моделирование водородопроницаемости сплавов для мембранного газоразделения
    Компьютерные исследования и моделирование, 2016, т. 8, № 1, с. 121-135

    Производство высокочистого водорода необходимо для экологически чистой энергетики и различных химико-технологических процессов. Значительная часть водорода будет производиться за счет конверсии метана. Методом измерения удельной водородопроницаемости исследуются различные сплавы, перспективные для использования в газоразделительных установках. Требуется оценить параметры диффузии и сорбции, чтобы иметь возможность численно моделировать различные сценарии и условия эксплуатации материала (включая экстремальные), выделять лимитирующие факторы. В статье представлены нелинейная модель водородопроницаемости в соответствии со спецификой эксперимента, численный метод решения краевой задачи и результаты параметрической идентификации модели для сплава V85Ni15.

    Просмотров за год: 1. Цитирований: 7 (РИНЦ).
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.