Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'частотно-ранговое распределение':
Найдено статей: 2
  1. Поддубный В.В., Поликарпов А.А.
    Диссипативная стохастическая динамическая модель развития языковых знаков
    Компьютерные исследования и моделирование, 2011, т. 3, № 2, с. 103-124

    Предлагается диссипативная стохастическая динамическая модель эволюции языковых знаков, удовлетворяющая принципу «наименьшего действия» — одному из фундаментальных вариационных принципов природы. Модель предполагает пуассоновский характер потока рождения языковых знаков, экспоненциальное (показательное) распределение ассоциативно-семантического потенциала (АСП) знака и оперирует разностными стохастическими уравнениями специального вида для диссипативных процессов. Получаемые из модели распределения полисемии и частотно-ранговые распределения языковых знаков статистически значимо (по критерию Колмогорова–Смирнова) не отличаются от эмпирических распределений, полученных из представительных толковых и частотных словарей русского и английского языков.

    Просмотров за год: 1. Цитирований: 6 (РИНЦ).
  2. Гузев М.А., Никитина Е.Ю.
    Ранговый анализ уголовных кодексов Российской Федерации, Федеративной Республики Германия и Китайской Народной Республики
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 969-981

    При принятии решения в различных областях человеческой деятельности часто требуется создавать текстовые документы. Традиционно изучением текстов занимается лингвистика, которая в широком смысле может пониматься как часть семиотики — науки о знаках и знаковых системах, при этом семиотические объекты бывают разных типов. Для количественного исследования знаковых систем широко используется метод ранговых распределений. Ранговое распределение — упорядоченная в порядке убывания по частоте появления совокупность наименований элементов. Для частотно-ранговых распределений исследователи часто используют название рower-law distributions.

    В данной работе метод ранговых распределений применяется для анализа Уголовного кодекса различных стран. Общая идея подхода при решении этой задачи состоит в рассмотрении кодекса как текстового документа, в котором знаком является мера наказания за отдельные преступления. Документ представляется как список вхождений некоторого слова (знака), а также всех его производных (словоформ). Совокупность всех этих знаков образует словарь наказаний, для которого выполняется подсчет частоты встречаемости каждой меры наказания в тексте кодекса. Это позволяет преобразовать построенный словарь в частотный словарь наказаний, для дальнейшего исследования которого используются подход В. П. Маслова, предложенный им к анализу задач лингвистики. Этот подход состоит в введении понятия виртуальной частоты встречаемости преступления, которая является мерой оценки не только реального вреда для общества, но и последствий совершенного преступления в различных сферах жизни человека. На этом пути в работе предлагается параметризация рангового распределения для анализа словаря наказаний Особенной части Уголовного кодекса Российской Федерации, касающейся наказаний за экономические преступления. Рассмотрены различные редакции кодекса и показано, что построенная модель объективно отражает его изменения в лучшую сторону, вносимые законодателями с течением времени. Были исследованы тексты, включающие сходные по составу преступления, аналогичные российскому специальному разделу Особенной части, для Уголовных кодексов, действующих в Федеративной Республике Германия и Китайской Народной Республике. Полученные в статье ранговые распределения для соответствующих частотных словарей кодексов совпадают с полученным В. П. Масловым законом, существенно уточняющим закон Ципфа. Это позволяет сделать вывод как о хорошей организации текста, так и об адекватности выбранного наказания для преступлений.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.