Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'цифровой сигнал':
Найдено статей: 5
  1. От редакции
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 209-212
  2. Аксенов К.В., Алексеев В.П.
    Фильтрация цифровых сигналов в режиме непрерывного поступления данных
    Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 55-61

    Cтатья посвящена выбору метода цифровой фильтрации сигнала при поступлении данных в режиме реального времени и использованию алгоритма фильтрации на основе быстрого вейвлет-преобразования в рамках специальной задачи.

    Просмотров за год: 6. Цитирований: 7 (РИНЦ).
  3. Масловский А.Ю., Суменков О.Ю., Воркутов Д.А., Чуканов С.В.
    Применение дискретных методов многокритериальной оптимизации для построения модели цифрового предискажения сигнала усилителя мощности базовой станции
    Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 281-300

    Осуществление передачи сигналов сотовой связи — одна из ключевых задач современного мира. Для улучшения сигнала передаваемой информации необходимо чтобы сигнал не искажался при усилении мощности на базовой станции сотовой связи. Поставленную задачу можно решать самыми различными способами, однако одним из самых простых решений, которое широко используется в индустрии, является добавление нелинейных искажений, позволяющих линеаризовать работу усилителя и устранять интермодуляционные искажения в областях спектра, не используемых для передачи сигнала. В силу большой нагрузки и работы в реальном времени модель, осуществляющая данные искажения, не должна быть громоздкой и иметь большое количество адаптируемых параметров. В данной статье производится анализ современных работ по теме многокритериальной оптимизации и построения моделей для решения задачи предискажения сигнала при помощи данных методов. В статье показывается, что возможно найти структуру (сохранив производительность) и имеющую меньшее количество используемых ресурсов, быстрее, чем полный перебор по всему словарю из заданных параметров.

  4. Деев А.А., Кальщиков А.А.
    Когерентный приемопередатчик с постоянной задержкой для синхронной оптоволоконной сети
    Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 141-155

    В статье предлагается реализация когерентного приемопередатчика с постоянной задержкой и возможностью свободно варьируемой сетки тактовых частот, используемой для тактирования периферийных ЦАП и АЦП, задач синхронизации устройств и передачи данных. Выбор необходимой сетки тактовых частот напрямую влияет на скорость передачи данных в сети, однако позволяет гибко настроить сеть для передачи тактовых сигналов и генерации синхроимпульсов с субнаносекундной точностью на всех устройствах в сети. Предложен метод повышения точности синхронизации до десятых долей наносекунды за счет использования цифровых фазовых детекторов и системы фазовой автоподстройки частоты (ФАПЧ) на ведомом устройстве. Использование высокоскоростных волоконно-оптических линий связи (ВОЛС) для задач синхронизации шкал времени, позволяет параллельно синхронизации производить обмен командами управления и сигнальными данными. Для упрощения и удешевления устройств синхронной сети приемопередатчиков предлагается использовать тактовый сигнал, восстановленный из сериализованных данных, и прошедший фильтрацию фазовых шумов, для формирования в системе ФАПЧ тактовых сигналов периферийных устройств, таких как ЦАП и АЦП, а также сигналов гетеродина. Представлены результаты многократных тестов синхронизации в предложенной синхронной сети.

  5. Алпатов А.В., Петерс Е.А., Пасечнюк Д.А., Райгородский А.М.
    Стохастическая оптимизация в задаче цифрового предыскажения сигнала
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 399-416

    В данной статье осуществляется сравнение эффективности некоторых современных методов и практик стохастической оптимизации применительно к задаче цифрового предыскажения сигнала (DPD), которое является важной составляющей процесса обработки сигнала на базовых станциях, обеспечивающих беспроводную связь. В частности, рассматривается два круга вопросов о возможностях применения стохастических методов для обучения моделей класса Винера – Гаммерштейна в рамках подхода минимизации эмпирического риска: касательно улучшения глубины и скорости сходимости данного метода оптимизации и относительно близости самой постановки задачи (выбранной модели симуляции) к наблюдаемому в действительности поведению устройства. Так, в первой части этого исследования внимание будет сосредоточено на вопросе о нахождении наиболее эффективного метода оптимизации и дополнительных к нему модификаций. Во второй части предлагается новая квази-онлайн-постановка задачи и, соответственно, среда для тестирования эффективности методов, благодаря которым результаты численного моделирования удается привести в соответствие с поведением реального прототипа устройства DPD. В рамках этой новой постановки далее осуществляется повторное тестирование некоторых избранных практик, более подробно рассмотренных в первой части исследования, и также обнаруживаются и подчеркиваются преимущества нового лидирующего метода оптимизации, оказывающегося теперь также наиболее эффективным и в практических тестах. Для конкретной рассмотренной модели максимально достигнутое улучшение глубины сходимости составило 7% в стандартном режиме и 5% в онлайн-постановке (при том что метрика сама по себе имеет логарифмическую шкалу). Также благодаря дополнительным техникам оказывается возможным сократить время обучения модели DPD вдвое, сохранив улучшение глубины сходимости на 3% и 6% для стандартного и онлайн-режимов соответственно. Все сравнения производятся с методом оптимизации Adam, который был отмечен как лучший стохастический метод для задачи DPD из рассматриваемых в предшествующей работе [Pasechnyuk et al., 2021], и с методом оптимизации Adamax, который оказывается наиболее эффективным в предлагаемом онлайн-режиме.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.