Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'функция принадлежности':
Найдено статей: 6
  1. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 5-8
  2. От редакции
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 5-8
  3. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 581-584
  4. Катасёв А.С.
    Нейронечеткая модель формирования нечетких правил для оценки состояния объектов в условиях неопределенности
    Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 477-492

    В данной статье решается задача построения нейронечеткой модели формирования нечетких правил и их использования для оценки состояния объектов в условиях неопределенности. Традиционные методы математической статистики или имитационного моделирования не позволяют строить адекватные модели объектов в указанных условиях. Поэтому в настоящее время решение многих задач основано на использовании технологий интеллектуального моделирования с применением методов нечеткой логики. Традиционный подход к построению нечетких систем связан с необходимостью привлечения эксперта для формулирования нечетких правил и задания используемых в них функций принадлежности. Для устранения этого недостатка актуальна автоматизация формирования нечетких правил на основе методов и алгоритмов машинного обучения. Одним из подходов к решению данной задачи является построение нечеткой нейронной сети и обучение ее на данных, характеризующих исследуемый объект. Реализация этого подхода потребовала выбора вида нечетких правил с учетом особенностей обрабатываемых данных. Кроме того, потребовалась разработка алгоритма логического вывода на правилах выбранного вида. Этапы алгоритма определяют число слоев в структуре нечеткой нейронной сети и их функциональность. Разработан алгоритм обучения нечеткой нейронной сети. После ее обучения производится формирование системы нечетко-продукционных правил. На базе разработанного математического обеспечения реализован программный комплекс. На его основе проведены исследования по оценке классифицирующей способности формируемых нечетких правил на примере анализа данных из UCI Machine Learning Repository. Результаты исследований показали, что классифицирующая способность сформированных нечетких правил не уступает по точности другим методам классификации. Кроме того, алгоритм логического вывода на нечетких правилах позволяет успешно производить классификацию при отсутствии части исходных данных. С целью апробации произведено формирование нечетких правил для решения задачи по оценке состояния водоводов в нефтяной отрасли. На основе исходных данных по 303 водоводам сформирована база из 342 нечетких правил. Их практическая апробация показала высокую эффективность в решении поставленной задачи.

    Просмотров за год: 12.
  5. Калачин С.В.
    Нечеткое моделирование восприимчивости человека к паническим ситуациям
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 203-218

    Изучение механизма развития массовой паники ввиду ее чрезвычайной значимости и социальной опасности представляет собой важную научную задачу. Имеющаяся информация о механизме ее разви- тия основана в основном на работах специалистов-психологов и относится к разряду неточной. Поэтому в качестве инструмента для разработки математической модели восприимчивости человека к паническим ситуациям выбрана теория нечетких множеств.

    В результате проведенного исследования разработана нечеткая модель, состоящая из следующих блоков: «Фаззификация», где происходит вычисление степени принадлежности значений входных пара- метров к нечетким множествам; «Вывод», где на основе степени принадлежности входных параметров вычисляется результирующая функция принадлежности выходного значения нечеткой модели; «Дефаззификация», где с помощью метода центра тяжести определяется единственное количественное значение выходной переменной, характеризующей восприимчивость человека к паническим ситуациям.

    Так как реальные количественные значения для лингвистических переменных психических свойств человека неизвестны, то оценить качество разработанной модели, создавая настоящую ситуацию страха и паники, не подвергая людей опасности, не представляется возможным. Поэтому качество результатов нечеткого моделирования оценивалось по расчетному значению коэффициента детерминации, показавшего, что разработанная нечеткая модель относится к разряду моделей хорошего качества $(R^2 = 0.93)$, что подтверждает правомерность принятых допущений при ее разработке.

    Согласно результатам моделирования восприимчивость человека к паническим ситуациям для сангвинического и холерического видов темперамента в соответствии с принятой классификацией можно отнести к повышенной (0.88), а для флегматического и меланхолического — к умеренной (0.38). Это означает, что холерики и сангвиники могут стать эпицентрами распространения паники и инициаторами возникновения давки, а флегматики и меланхолики — препятствиями на путях эвакуации, что необходимо учитывать при разработке эффективных эвакуационных мероприятий, главной задачей которых является быстрая и безопасная эвакуация людей из неблагоприятных условий.

    В утвержденных методиках расчет нормативных значений параметров безопасности основан на упрощенных аналитических моделях движения людского потока, потому что приходится учитывать большое число факторов, часть которых являются количественно неопределенными. Полученный результат в виде количественных оценок восприимчивости человека к паническим ситуациям позволит повысить точность расчетов.

  6. Калачин С.В.
    Нечеткое моделирование механизма передачи панического состояния среди людей с различными видами темперамента
    Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 1079-1092

    Массовое скопление людей всегда представляет собой потенциальную опасность и угрозу для их жизни. К тому же ежегодно в мире в давке, основной причиной которой является массовая паника, гибнет очень большое количество людей. Поэтому изучение феномена массовой паники, ввиду ее чрезвычайной социальной опасности, представляет собой важную научную задачу. Имеющаяся информация о процессах ее возникновения и распространения относится к разряду неточной. Поэтому в качестве инструмента для разработки математической модели механизма передачи панического состояния среди людей с различными видами темперамента выбрана теория нечетких множеств.

    При разработке нечеткой модели было сделано предположение о том, что паника, из эпицентра шокирующего стимула, распространяется среди людей по волновому принципу, проходя с различной частотой через разные среды (виды темперамента человека), и определяется скоростью и интенсивностью циркулярной реакции механизма передачи панического состояния. Поэтому разработанная нечеткая модель, наряду с двумя входами, имеет два выхода — скорость и интенсивность циркулярной реакции. В блоке «Фаззификация» вычисляются степени принадлежности числовых значений входных параметров (частоты волны распространения паники и восприимчивости человека к паническим ситуациям) к нечетким множествам. Блок «Вывод» на входе получает степени принадлежности для каждого входного параметра и на выходе определяет результирующую функцию принадлежности скорости циркулярной реакции и ее производную, являющуюся функцией принадлежности для интенсивности циркулярной реакции. В блоке «Дефаззификация» с помощью метода центра тяжести определяется количественное значение для каждого выходного параметра. Оценка качества разработанной нечеткой модели, проведенная посредством вычисления коэффициента детерминации, показала, что разработанная математическая модель относится к разряду моделей хорошего качества.

    Полученный результат в виде количественных оценок циркулярной реакции позволяет улучшить качество понимания психических процессов, происходящих при передаче панического состояния среди людей. Кроме того, это дает возможность усовершенствовать существующие и разрабатывать новые модели хаотичного поведения людей, которые предназначены для выработки эффективных решений в кризисных ситуациях, направленных на полное либо частичное предотвращение распространения массовой паники, приводящей к возникновению панического бегства, давки и появлению человеческих жертв.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.