Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'уравнения движения':
Найдено статей: 108
  1. Сухов Е.А., Чекина Е.А.
    Программный комплекс для численного моделирования движения систем многих тел
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 161-174

    В настоящей работе решается задача численного моделирования движения механических систем, состоящих из твердых тел с произвольными массово-инерционными характеристиками. Предполагается, что рассматриваемые системы являются пространственными и могут содержать замкнутые кинематические цепи. Движение системы происходит под действием внешних и внутренних сил достаточно произвольного вида.

    Моделирование движения механической системы производится полностью автоматически при помощи вычислительного алгоритма, состоящего из трех основных этапов. На первом этапе на основе задаваемых пользователем начальных данных выполняется построение графа механической системы, представляющего ее иерархическую структуру. На втором этапе происходит вывод дифференциально-алгебраических уравнений движения системы. Для вывода уравнений движения используется так называемый метод шарнирных координат. Отличительной чертой данного метода является сравнительно небольшое количество получаемых уравнений движения, что позволяет повысить производительность вычислений. На третьем этапе выполняются численное интегрирование уравнений движения и вывод результатов моделирования.

    Указанный алгоритм реализован в виде программного комплекса, содержащего систему символьной математики, библиотеку графов, механический решатель, библиотеку численных методов и пользовательский интерфейс.

  2. Жаркова В.В., Щеляев А.Е., Фишер Ю.В.
    Численное моделирование внешнего обтекания спортсмена
    Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 331-344

    В работе описывается численное моделирование процесса внешнего обтекания подвижного спортсмена с целью определения его интегральных характеристик при различных режимах набегающего потока и режимах его движения. Численное моделирование выполнено с помощью программного комплекса вычислительной гидродинамики FlowVision, построенного на решении набора уравнений, описывающих движение жидкости и/или газа в расчетной области, в том числе уравнений сохранения массы, импульса и энергии, уравнений состояния, уравнений моделей турбулентности. Также учитываются подвижные границы расчетной области, изменяющаяся геометрическая форма которых моделирует фазы движения спортсмена, при прохождении трассы. Решение системы уравнений выполняется на декартовой сетке с локальной адаптацией в области высоких градиентов давлений или сложной геометрической формы границы расчетной области. Решение уравнений выполняется с помощью метода конечных объемов, с использованием расщепления по физическим процессам. Разработанная методика была апробирована на примере спортсменов, совершающих прыжки на лыжах с трамплина, в рамках подготовки к Олимпиаде в Сочи в 2014 году. Сравнение результатов численного и натурного эксперимента показало хорошую корреляцию. Технология моделирования состоит из следующих этапов:

    1) разработка постановки задачи внешнего обтекания спортсмена в обращенной постановке, где неподвижный объект исследования обтекается набегающим потоком, со скоростью, равной скорости движения объекта;

    2) разработка технологии изменения геометрической формы границы расчетной области в зависимости от фазы движения спортсмена; разработка методики численного моделирования, включающей в себя определение дискретизации по времени и пространству за счет выбора шага интегрирования и измельчения объемной расчетной сетки;

    3) проведение серии расчетов с использованием геометрических и динамических данных спортсмена из сборной команды.

    Описанная методика универсальна и применима для любых других видов спорта, биомеханических, природных и подобных им технических объектов.

    Просмотров за год: 29.
  3. Русяк И.Г., Тененев В.А.
    Моделирование баллистики артиллерийского выстрела с учетом пространственного распределения параметров и противодавления
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1123-1147

    В работе приводится сравнительный анализ результатов, полученных при различных подходах к моделированию процесса артиллерийского выстрела. В этой связи дана постановка основной задачи внутренней баллистики и ее частного случая задачи Лагранжа в осредненных параметрах, где в рамках допущений термодинамического подхода впервые учтены распределения давления и скорости газа по заснарядному пространству для канала переменного сечения. Представлена также постановка задачи Лагранжа в рамках газодинамического подхода, учитывающего пространственное (одномерное и двумерное осесимметричное) изменение характеристик внутрибаллистического процесса. Для численного решения системы газодинамических уравнений Эйлера применяется метод контрольного объема. Параметры газа на границах контрольных объемов опреде- ляются с использованием автомодельного решения задачи о распаде произвольного разрыва. На базе метода Годунова предложена модификация схемы Ошера, позволяющая реализовать алгоритм численного расчета со вторым порядком точности по координате и времени. Проведено сравнение решений, полученных в рамках термодинамического и газодинамического подходов, при различных параметрах заряжания. Изучено влияние массы снаряда и уширения камеры на распределение внутрибаллистических параметров выстрела и динамику движения снаряда. Показано, что термодинамический подход, по сравнению с газодинамическим подходом, приводит к систематическому завышению расчетной дульной скорости снаряда во всем исследованном диапазоне изменения параметров, при этом различие по дульной скорости может достигать 35 %. В то же время расхождение результатов, полученных в рамках одномерной и двумерной газодинамических моделей выстрела в этом же диапазоне изменения параметров, составляет не более 1.3 %.

    Дана пространственная газодинамическая постановка задачи о противодавлении, описывающая изменение давления перед ускоряющимся снарядом при его движении по каналу ствола. Показано, что учет формы передней части снаряда в рамках двумерной осесимметричной постановки задачи приводит к существенному различию полей давления за фронтом ударной волны по сравнению с решением в рамках одномерной постановки задачи, где форму передней части снаряда учесть невозможно. Сделан вывод, что это может существенно повлиять на результаты моделирования баллистики выстрела при высоких скоростях метания.

  4. Аксёнов А.А., Жлуктов С.В., Похилко В.И., Сорокин К.Э.
    Неявный алгоритм решения уравнений движения несжимаемой жидкости
    Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 1009-1023

    Для решения уравнений Навье – Стокса в случае несжимаемых течений разработано большое количество методов, наиболее популярными из которых являются методы с коррекцией скорости по алгоритму SIMPLE, аналогом которого является метод расщепления по физическим переменным. Данные методы, разработанные еще в прошлом веке, использовались для решения достаточно простых задач — расчета как стационарных течений, так и нестационарных, в которых границы расчетной области были неподвижны. В настоящее время задачи вычислительной гидродинамики существенно усложнились. Интерес представляют задачи с движением тел в расчетной области, движением контактных границ, кавитацией и задачи с динамической локальной адаптацией расчетной сетки. При этом расчетная сетка меняется, что приводит к нарушению условия дивергентности скорости на ней. Поскольку дивергентные скорости используются не только для уравнений Навье – Стокса, но и для всех остальных уравнений математической модели движения жидкости — моделей турбулентности, массопереноса и сохранения энергии, нарушение этого условия ведет к численным ошибкам и, зачастую, к расхождению вычислительного алгоритма.

    В статье представлен неявный метод расщепления по физическим переменным, который использует дивергентные скорости с данного шага по времени для решения несжимаемых уравнений Навье – Стокса. Метод разработан для расчета течений при наличии подвижных и контактных границ, моделируемых в постановке Эйлера. Метод позволяет проводить расчеты с шагом интегрирования, на порядки превышающем явный шаг по времени (число Куранта – Фридрихcа – Леви $CFL\gg1$). В данной статье представлен вариант метода для несжимаемых течений. Вариант метода, позволяющий рассчитывать движение жидкости и газа при любых числах Маха, будет опубликован в ближайшее время. Метод для полностью сжимаемых течений реализован в программном комплексе FlowVision.

    В статье приводятся результаты численного решения классической задачи обтекания кругового цилиндра при малых числах Рейнольдса ($50<Re<140$), при которых ламинарное обтекание цилиндра становиться нестационарным и образуется дорожка Кармана. Показано хорошее совпадение расчетов с экспериментальными данными, опубликованными в классических работах Ван-Дайка и Танеды.

  5. Тишкин В.Ф., Трапезникова М.А., Чечина А.А., Чурбанова Н.Г.
    Моделирование транспортных потоков на основе квазигазодинамического подхода и теории клеточных автоматов с использованием суперкомпьютеров
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 175-194

    Целью исследования являются моделирование динамики автотранспортных потоков на транспортных сетях мегаполисов и систематизация современного состояния дел в этой области. Во введении указывается, что на первый план выходит развитие интеллектуальных транспортных систем, которые становятся неотъемлемой частью современных транспортных технологий. Основным ядром таких систем являются адекватные математические модели, максимально приближенные к реальности. Отмечается, что в связи с большим объемом вычислений необходимо использование суперкомпьютеров, следовательно, создание специальных пар аллельных алгоритмов. В начале статьи приводится современная классификация моделей, обсуждаются отличительные особенности каждого класса со ссылками на соответствующие примеры. Далее основное внимание уделяется созданным авторами статьи разработкам в области как макроскопического, так и микроскопического моделирования и определению места этих разработок в приведенной выше классификации. Макроскопическая модель основана на приближении сплошной среды и использует идеологию квазигазодинамических систем уравнений. Указаны ее достоинства по сравнению с существующими моделями этого класса. Система уравнений модели представлена как в одномерном варианте, но с возможностью исследования многополосного движения, так и в двумерном варианте, с введением понятия боковой скорости, то есть скорости перестроения из полосы в полосу. Второй вариант позволяет проводить вычисления в расчетной области, соответствующей реальной геометрии дороги. Представлены тестовые расчеты движения по дороге с локальным расширением и по дороге с системой светофоров с различными светофорными режимами. Расчеты позволили в первом случае сделать интересные выводы о влиянии расширения на пропускную способность дороги в целом, а во втором случае — выбрать оптимальный режим для получения эффекта «зеленой волны». Микроскопическая модель основана на теории клеточных автоматов и однополосной модели Нагеля – Шрекенберга и обобщена авторами на случай многополосного движения. В модели реализованы различные поведенческие стратегии водителей. В качестве теста моделируется движение на реальном участке транспортной сети в центре г. Москвы. Причем для грамотного прохождения транспортных узлов сети в соответствии с правилами движения реализованы специальные алгоритмы, адаптированные для параллельных вычислений. Тестовые расчеты выполнены на суперкомпьютере К-100 ЦКП ИПМ им. М. В. Келдыша РАН.

  6. Якушевич Л.В., Рясик А.А.
    Динамические характеристики кинков и антикинков ДНК
    Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 209-217

    В данной работе в рамках модели синус-Гордона рассчитываются динамические характеристики кинков и антикинков, активированных в однородных полинуклеотидных цепочках, каждая из которых содержит только один из видов оснований: аденины, тимины, гуанины или цитозины. Получены аналитические формулы и построены графики для профилей кинков и антикинков и для плотности их энергии в 2D- и 3D-формате. Вычислены масса кинков и антикинков, их энергия покоя и размеры. Рассчитаны траектории движения кинков и антикинков в фазовом пространстве в 2D- и 3D-формате.

    Просмотров за год: 2. Цитирований: 7 (РИНЦ).
  7. Мельникова И.В., Бовкун В.А.
    Связь между дискретными финансовыми моделями и непрерывными моделями с процессами Винера и Пуассона
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 781-795

    Работа посвящена исследованию связей между дискретными и непрерывными моделями финансовых процессов и их вероятностных характеристик. Во-первых, установлена связь между процессами цен акций, хеджирующего портфеля и опционов в моделях, обусловленных биномиальными возмущениями и предельными для них возмущениями типа броуновского движения. Во-вторых, указаны аналоги в коэффициентах стохастических уравнений с различными случайными процессами, непрерывными и скачкообразными, и в коэффициентах соответствующих детерминированных уравнений для их вероятностных характеристик.

    Изложение результатов исследования связей и нахождения аналогий, полученных в настоящей работе, привело к необходимости адекватного изложения предварительных сведений и результатов из финансовой математики, а также описания связанных с ней объектов стохастического анализа.

    В работе частично новые и известные результаты изложены в доступной форме для тех, кто не является специалистом по финансовой математике и стохастическому анализу и кому эти результаты важны с точки зрения приложений. Конкретно, представлены следующие разделы.

    • В одно- и $n$-периодных биномиальных моделях предложен единый подход к определению на вероятностном пространстве риск-нейтральной меры, с которой дисконтированная цена опциона становится мартингалом. Полученная мартингальная формула для цены опциона пригодна для численного моделирования. В следующих разделах подход на основе риск-нейтральных мер применяется для исследования финансовых процессов в моделях непрерывного времени.

    • В непрерывном времени рассмотрены модели цены акций, хеджирующего портфеля и опциона в форме стохастических уравнений с интегралом Ито по броуновскому движению и по компенсированному процессу Пуассона. Изучение свойств процессов, являющихся решениями стохастических уравнений, в этом разделе опирается на один из центральных объектов стохастического анализа — формулу Ито, методике применения которой уделено особое внимание.

    • Представлена знаменитая формула Блэка –Шоулза, дающая решение уравнения в частных производных для функции $v(t, x)$, которая при подстановке $x = S (t)$, где $S(t)$ — цена акций в момент времени $t$, дает цену опциона в модели с непрерывным возмущением броуновским движением.

    • Предложен аналог формулы Блэка – Шоулза для случая модели со скачкообразным возмущением процессом Пуассона. Вывод этой формулы опирается на технику риск-нейтральных мер и лемму независимости.

  8. Погорелова Е.А., Лобанов А.И.
    Высокопроизводительные вычисления в моделировании крови
    Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 917-941

    Приведен обзор методов моделирования движения и реологических свойств крови как суспензии взвешенных частиц. Рассмотрены методы граничных интегральных уравнений, решеточных уравнений Больцмана, конечных элементов на подвижных сетках, диссипативной динамики частиц, а также агентные модели. Приведен анализ применения этих методов при расчетах на высокопроизводительных системах различной архитектуры.

    Просмотров за год: 2. Цитирований: 3 (РИНЦ).
Страницы: « первая предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.