Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
О построении и свойствах WENO-схем пятого, седьмого, девятого, одиннадцатого и тринадцатого порядков. Часть 1. Построение и устойчивость
Компьютерные исследования и моделирование, 2016, т. 8, № 5, с. 721-753Просмотров за год: 9. Цитирований: 1 (РИНЦ).В настоящее время для численного моделирования начально-краевых задач для систем гиперболических уравнений в частных производных (например, уравнения газовой динамики, МГД, деформируемого твердого тела и т. д.) применяются различные нелинейные численные схемы пространственной аппроксимации. Это связано с необходимостью повышения порядка аппроксимации и расчета разрывных решений, часто возникающих в таких системах. Необходимость в нелинейных схемах связана с ограничением, следующим из теоремы С. К. Годунова о невозможности построения линейной схемы порядка больше первого для монотонной аппроксимации уравнений такого типа. Одними из наиболее точных нелинейных схем являются схемы типа ENO (существенно не осциллирующие схемы и их модификации), в том числе схемы WENO (взвешенные, существенно не осциллирующие схемы). Последние получили наибольшее распространение, поскольку при одинаковой ширине шаблона имеют более высокий порядок аппроксимации чем ENO-схемы. Плюсом ENO- и WENO-схем является сохранение высокого порядка аппроксимации на немонотонных участках решения. Исследование данных схем затруднительно в связи с тем, что сами схемы нелинейны и применяются для аппроксимации нелинейных уравнений. В частности, условие линейной устойчивости ранее было получено только для схемы WENO5 (пятого порядка аппроксимации на гладких решениях) и является приближенным. В настоящей работе рассматриваются вопросы построения и устойчивости схем WENO5, WENO7, WENO9, WENO11 и WENO13 для конечно-объемной схемы для уравнения Хопфа. В первой части статьи рассмотрены методы WENO в общем случае и приведены явные выражения для коэффициентов полиномов и весов линейных комбинаций, необходимых для построения схем. Доказывается ряд утверждений, позволяющих сделать выводы о порядках аппроксимации в зависимости от локального вида решения. Проводится анализ устойчивости на основе принципа замороженных коэффициентов. Рассматриваются случаи гладкого и разрывного поведения решения в области линеаризации при замороженных коэффициентах на гранях конечного объема и анализируется спектр схем для этих случаев. Доказываются условия линейной устойчивости для различных методов Рунге–Кутты при применении со схемами WENO. В результате приводятся рекомендации по выбору максимально возможного параметра устойчивости, которое наименьшим образом влияет на нелинейные свойства схем. Следуя полученным ограничениям, делается вывод о сходимости схем.
-
Клеточно-автоматные методы решения классических задач математической физики на гексагональной сетке. Часть 2
Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 547-566Просмотров за год: 6.Во второй части статьи, носящей более прикладной характер, завершается рассмотрение трех классических уравнений математической физики (Лапласа, диффузии и волнового) простейшими численными схемами в формулировке клеточных автоматов (КА). На нескольких примерах, относящихся к гексагональной сетке, показана специфика такого решения и подтверждаются выводы первой части, в частности о выполнении свойства консервативности и эффекте избыточной гексагональной симметрии (ИГС).
При решении задачи Неймана для колебаний круглой мембраны показана критичность требований к дискретизации условий для граничных КА-ячеек. Для квазиодномерной задачи «диффузия в полупространство» сравниваются КА-расчеты, проводимые по простой схеме и с использованием обобщенного блочно-поворотного механизма Марголуса. При решении смешанной задачи для классического случая колебания круглой мембраны с закрепленными концами показано, что одновременное применение метода Кранка–Николсон и учет членов второго порядка позволяет избежать ИГС-эффекта, наблюдаемого нами для более простой схемы. С точки зрения КА центральное место занимает уравнение диффузии, на пути решения которого на бесконечных временах находится решение краевой задачи для уравнения Лапласа, а путем введения вектор-переменной становится разрешимо волновое уравнение (по крайней мере скалярное).
На примере центрально-симметричной задачи Неймана продемонстрирован новый способ введения пространственных производных в postfix-процедуру КА, отражающую временные производные (основанием является уравнение непрерывности). Для случая центральной симметрии эмпирически найдено значение константы, связывающее эти производные. Показано, что препятствием к применению КА-методов для таких задач являются низкая скорость сходимости и точность, лимитируемая точностью дискретизации границ, а не формальной точностью метода (4-й порядок); наша рекомендация состоит в использовании техники multigrid. При решении квазиодномерного уравнения диффузии (двумерным КА) показано, что блочно-поворотный КА (по механизму Марголуса) более эффективен, чем простой КА.
-
Разработка сетевых вычислительных моделей для исследования нелинейных волновых процессов на графах
Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 777-814В различных приложениях возникают задачи, моделируемые уравнениями в частных производных на графах (сетях, деревьях). Для исследования данных проблем и возникающих различных экстремальных ситуаций, для задач проектирования и оптимизации сетей различных типов в данной работе построена вычислительная модель, основанная на решении соответствующих краевых задач для нелинейных уравнений в частных производных гиперболического типа на графах (сетях, деревьях). В качестве приложений были выбраны три различные задачи, решаемые в рамках общего подхода сетевых вычислительных моделей. Первая — это моделирование движения транспортных потоков. При решении данной задачи использовался макроскопический подход, при котором транспортный поток описывается нелинейной системой гиперболических уравнений второго порядка. Проведенные расчеты и полученные результаты показали, что разработанная в рамках предложенного подхода модель хорошо воспроизводит реальную ситуацию на различных участках транспортной сети г. Москвы на значительных временных интервалах, а также может быть использована для выбора наиболее оптимальной стратегии организации дорожного движения в городе. Вторая — моделирование потоков данных в компьютерных сетях. В этой задаче потоки данных различных соединений в пакетной сети передачи данных моделировались в виде несмешивающихся потоков сплошной среды. Предложены концептуальная и математическая модели сети. Проведено численное моделирование в сравнении с системой имитационного моделирования сети NS-2. Полученные результаты показали, что в сравнении с пакетной моделью NS-2 разработанная нами потоковая модель демонстрирует значительную экономию вычислительных ресурсов, обеспечивая при этом хорошую степень подобия, и позволяет моделировать поведение сложных глобально распределенных IP-сетей передачи данных. Третья — моделирование распространения газовых примесей в вентиляционных сетях. Была разработана вычислительная математическая модель распространения мелкодисперсных или газовых примесей в вентиляционных сетях с использованием уравнений газовой динамики путем численного сопряжения областей разной размерности. Проведенные расчеты показали, что модель с хорошей точностью позволяет определять распределение газодинамических параметров в трубопроводной сети и решать задачи динамического управления вентиляцией.
-
Клеточно-автоматные методы решения классических задач математической физики на гексагональной сетке. Часть 1
Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 167-186Просмотров за год: 6.Статья носит методический характер и посвящена решению трех классических уравнений математической физики (Лапласа, диффузии и волнового) простейшими численными схемами в формулировке клеточных автоматов (КА). Особое внимание уделяется законам сохранения вещества и неприятному эффекту избыточной гексагональной симметрии (ИГС).
Делается вывод о том, что по сравнению с классическими конечно-разностными методами, хотя локальная функция перехода (ЛФП) КА терминологически эквивалентна шаблону вычислительной двухслоевой явной схемы, различие состоит в замене матричных (direct) методов (например, метода прогонки для трехдиагональной матрицы) итерационными. Из этого следуют более жесткие требования к дискретизации условий для граничных КА-ячеек.
Для гексагональной сетки и консервативных граничных условий записана корректная ЛФП для граничных ячеек, справедливая, по крайней мере, для границ прямоугольной и круговой формы. Предложена идея разделения ЛФП на internal, boundary и postfix. На примере этой задачи заново осмыслено значение числа Куранта–Леви как соотношения скорости сходимости КА к решению задачи, данному на фиксированный момент времени, и скорости изменения самого решения в динамике.
-
Нахождение особых решений многомерных дифференциальных уравнений типа Клеро в частных производных с тригонометрическими функциями
Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 33-42В работе изучается класс дифференциальных уравнений типа Клеро в частных производных первого порядка, которые представляют собой многомерное обобщение обыкновенного дифференциального уравнения Клеро на случай, когда искомая функция зависит от многих переменных. Известно, что общее решение дифференциального уравнения типа Клеро в частных производных представляет собой семейство интегральных (гипер-) плоскостей. Помимо общего решения, могут существовать частные решения, а в некоторых частных случаях удается найти особое (сингулярное) решение.
Целью работы является нахождение особых решений многомерных дифференциальных уравнений типа Клеро в частных производных первого порядка со специальной правой частью. В работе сформулирован критерий существования особого решения дифференциального уравнения типа Клеро в частных производных для случая, когда функция от производных представляет собой функцию от линейной комбинации частных производных. Получены сингулярные решения для данного типа дифференциальных уравнений с тригонометрическими функциями от линейной комбинации $n$-независимых переменных с произвольными коэффициентами. Показано, что задача нахождения особого решения сводится к решению системы трансцендентных уравнений, содержащих исходные тригонометрические функции. В статье описана процедура нахождения сингулярного решения уравнения типа Клеро, основная идея которой заключается в нахождении не частных производных искомой функции, как функций независимых переменных, а линейных комбинаций частных производных с некоторыми коэффициентами. Данный метод может быть применен для нахождения особых решений уравнений типа Клеро, для которых данная структура сохраняется.
Работа организована следующим образом. Введение содержит краткий обзор некоторых современных результатов, имеющих отношение к теме исследования уравнений типа Клеро. Вторая часть является основной, в ней сформулирована задача работы и описан метод поиска сингулярных решений дифференциальных уравнениях типа Клеро в частных производных со специальной правой частью. Основным результатом работы является нахождение сингулярных решений уравнений, содержащих тригонометрические функции, приведенные в основной части работы в качестве примеров, иллюстрирующих описанный ранее метод. В заключении сформулированы результаты работы и обсуждается направление дальнейших исследований.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"