Текущий выпуск Номер 2, 2024 Том 16

Все выпуски

Результаты поиска по 'уравнения Навье – Стокса':
Найдено статей: 40
  1. От редакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 853-855
    Просмотров за год: 6.
  2. От редакции
    Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 379-381
    Просмотров за год: 36.
  3. От редакции
    Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 733-735
    Просмотров за год: 20.
  4. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 471-473
  5. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1261-1264
  6. От редакции
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 695-696
  7. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 801-803
  8. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 245-248
  9. Фомин А.А., Фомина Л.Н.
    Неявный итерационный полинейный рекуррентный метод в применении к решению задач динамики несжимаемой вязкой жидкости
    Компьютерные исследования и моделирование, 2015, т. 7, № 1, с. 35-50

    В работе рассматриваются результаты применения неявного итерационного полинейного рекуррентного метода решения систем разностных эллиптических уравнений, возникающих при численном моделировании динамики несжимаемой вязкой жидкости. Исследование проводится на примере решения задачи о стационарном течении в плоской каверне с подвижной крышкой, сформулированной в естественных переменных ($u, \,v, \,p$) при больших значениях чисел Re (до 20 000) и сеточных разрешений (до 2049×2049). Демонстрируется высокая эффективность метода при расчете полей поправки давления. Анализируются проблемы решения задачи при больших числах Re.

    Просмотров за год: 3. Цитирований: 3 (РИНЦ).
  10. Аксёнов А.А.
    FlowVision: индустриальная вычислительная гидродинамика
    Компьютерные исследования и моделирование, 2017, т. 9, № 1, с. 5-20

    В работе представлена новая версия программного комплекса FlowVision, предназначенного для автоматизации инженерных расчетов в области вычислительной гидродинамики: FlowVision 3.09.05. Программный комплекс (ПК) FlowVision используется для решения различных прикладных задач в различных областях промышленности. Его популярность основана на том, что он позволяет решать сложные нетрадиционные задачи, находящиеся на стыке различных дисциплин, с одной стороны, и, с другой стороны, на парадигме полной автоматизации таких трудоемких для инженера процессов, как построение расчетной сетки. FlowVision — это программный комплекс, полностью отчуждаемый от разработчиков. Он имеет развитый графический интерфейс, систему задания расчетного проекта и систему визуализации течений различными методами — от построения контуров (для скалярных переменных) и векторов (для векторных переменных) на плоскостях и поверхностях до объемной визуализации расчетных данных. Кроме этого, ПК FlowVision предоставляет пользователю возможность вычислять интегральные характеристики на поверхностях и в ограниченных объемах.

    ПК основан на конечно-объемном подходе к аппроксимации основных уравнений движения жидкости. В нем реализованы явный и неявный методы решения этих уравнений. ПК имеет автоматический построитель неструктурированной сетки с возможностью ее локальной динамической адаптации. В ПК реализован двухуровневый параллелизм, позволяющий эффективно проводить расчеты на компьютерах, имеющих распределенную и общую память одновременно. FlowVision обладает широким спектром физико-математических моделей: турбулентности (URANS, LES, ILES), горения, массопереноса с учетом химических превращений и радиоактивного распада, электрогидродинамики.

    FlowVision позволяет решать задачи движения жидкостей со скоростями, соответствующими несжимаемому или гиперзвуковому режимам за счет использования все-скоростного метода расщепления по физическим переменным для решения уравнений НавьеСтокса. FlowVision позволяет решать междисциплинарные задачи с использованием различных средств моделирования, например: моделировать многофазные течения методом VOF, обтекание подвижных тел с помощью эйлерова подхода при неподвижной расчетной сетке, моделировать вращающиеся машины с использованием метода скользящей сетки, решать задачи взаимодействия жидкости и конструкций методом двухстороннего сопряжения FlowVision с конечно-элементными кодами. В данной работе показаны примеры решения задач-вызовов: a) посадка космического корабля на воду при торможении ракетными двигателями, где есть граница раздела «воздух–вода», подвижные тела и взаимодействие сверхзвуковой струи газа с границей раздела «вода–воздух»; б) моделирование работы человеческого сердца с искусственными и живыми клапанами, спроектированными на базе томографических исследований, с использованием двухстороннего сопряжения «жидкостной» расчетной области с конечно-элементной моделью мышц сердца.

    Просмотров за год: 30. Цитирований: 8 (РИНЦ).
Страницы: следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.