Текущий выпуск Номер 3, 2024 Том 16

Все выпуски

Результаты поиска по 'уравнение состояния':
Найдено статей: 80
  1. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1415-1418
  2. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 5-10
  3. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 245-248
  4. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 581-584
  5. В приближении однородной намагниченности построена математическая модель ячейки памяти MRAM c осью анизотропии, расположенной в плоскости запоминающего ферромагнитного слоя ячейки и ориентированной параллельно ее краю (продольная анизотропия). Модель базируется на уравнении Ландау–Лифшица–Гильберта с токовым членом в форме Слончевского–Берже. Выведена система обыкновенных дифференциальных уравнений в нормальном виде, описывающая динамику намагниченности в трехслойной вентильной структуре Co/Cu/Co в зависимости от величины тока инжекции и внешнего магнитного поля, параллельного оси анизотропии магнитных слоев. Показано, что при любых токах и полях система имеет два основных состояния равновесия, расположенных на оси, совпадающей с осью анизотропии. Проведен анализ устойчивости этих состояний равновесия. Выписаны уравнения для определения дополнительных состояний равновесия. Показано, что в зависимости от величины внешнего магнитного поля и тока инжекции система может иметь всего два, четыре и шесть симметричных относительно оси анизотропии положений равновесия. Построены бифуркационные диаграммы, характеризующие основные типы динамики вектора намагниченности свободного слоя. Проведена классификация фазовых портретов на единичной сфере в зависимости от управляющих параметров (тока и поля). Изучены особенности динамики вектора намагниченности в каждой из характерных областей бифуркационной диаграммы и численно построены траектории переключения. Для построения траекторий использовался метод Рунге–Кутты. Найдены параметры, при которых существуют неустойчивые и устойчивые предельные циклы. Установлено, что неустойчивые предельные циклы существуют вокруг основного устойчивого равновесия на оси, совпадающей с осью анизотропии, а устойчивые циклы — вокруг неустойчивых дополнительных равновесий. Граница области существования устойчивых предельных циклов рассчитана численно. Обнаружены новые типы динамики под влиянием внешнего магнитного поля и спин-поляризованного тока инжекции: случайное и неполное переключение намагниченности. Аналитически определены значения пороговых токов переключения в зависимости от внешнего магнитного поля. Численно выполнены оценки времени переключения в зависимости от величин управляющих параметров.

    Просмотров за год: 2. Цитирований: 6 (РИНЦ).
  6. Гайко В.А., Савин С.И., Климчик А.С.
    Глобальные бифуркации предельных циклов полиномиальной системы Эйлера–Лагранжа–Льенара
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 693-705

    В данной статье, используя наш бифуркационно-геометрический подход, мы изучаем глобальную динамику и решаем проблему о максимальном числе и распределении предельных циклов (автоколебательных режимов, соответствующих состояниям динамического равновесия) в планарной полиномиальной механической системе типа Эйлера–Лагранжа–Льенара. Такие системы используются также для моделирования электротехнических, экологических, биомедицинских и других систем, что значительно облегчает исследование соответствующих реальных процессов и систем со сложной внутренней динамикой. Они используется, в частности, в механических системах с демпфированием и жесткостью. Существует ряд примеров технических систем, которые описываются с помощью квадратичного демпфирования в динамических моделях второго порядка. В робототехнике, например, квадратичное демпфирование появляется при управлении с прямой связью и в нелинейных устройствах, таких как приводы с переменным импедансом (сопротивлением). Приводы с переменным сопротивлением представляют особый интерес для совместной робототехники. Для исследования характера и расположения особых точек в фазовой плоскости полиномиальной системы Эйлера–Лагранжа–Льенара используется разработанный нами метод, смысл которого состоит в том, чтобы получить простейшую (хорошо известную) систему путем обращения в нуль некоторых параметров (обычно параметров, поворачивающих поле) исходной системы, а затем последовательно вводить эти параметры, изучая динамику особых точек в фазовой плоскости. Для исследования особых точек системы мы используем классические теоремы Пуанкаре об индексе, а также наш оригинальный геометрический подход, основанный на применении метода двух изоклин Еругина, что особенно эффективно при исследовании бесконечно удаленных особых точек. Используя полученную информацию об особых точках и применяя канонические системы с параметрами, поворачивающими векторное поле, а также используя геометрические свойства спиралей, заполняющих внутренние и внешние области предельных циклов, и применяя наш геометрический подход к качественному анализу, мы изучаем бифуркации предельных циклов рассматриваемой системы.

  7. Гогуев М.В., Кислицын А.А.
    Моделирование траекторий временных рядов с помощью уравнения Лиувилля
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 585-598

    Представлен алгоритм моделирования ансамбля траекторий нестационарных временных рядов. Построена численная схема аппроксимации выборочной плотности функции распределения в задаче с закрепленными концами, когда начальное распределение за заданное количество шагов переходит в определенное конечное распределение, так, что на каждом шаге выполняется полугрупповое свойство решения уравнения Лиувилля. Модель позволяет численно построить эволюционирующие плотности функций распределения при случайном переключении состояний системы, порождающей исходный временной ряд.

    Основная проблема, рассматриваемая в работе, связана с тем, что при численной реализации левосторонней разностной производной по времени решение становится неустойчивым, но именно такой подход отвечает моделированию эволюции. При выборе неявных устойчивых схем с «заходом в будущее» используется итерационный процесс, который на каждом своем шаге не отвечает полугрупповому свойству. Если же моделируется некоторый реальный процесс, в котором предположительно имеет место целеполагание, то желательно использовать схемы, которые порождают модель переходного процесса. Такая модель используется в дальнейшем для того, чтобы построить предиктор разладки, который позволит определить, в какое именно состояние переходит изучаемый процесс до того, как он действительно в него перешел. Описываемая в статье модель может использоваться как инструментарий моделирования реальных нестационарных временных рядов.

    Схема моделирования состоит в следующем. Из заданного временного ряда отбираются фрагменты, отвечающие определенным состояниям, например трендам с заданными углами наклона и дисперсиями. Из этих фрагментов составляются эталонные распределения состояний. Затем определяются эмпирические распределения длительностей пребывания системы в указанных состояниях и длительности времени перехода из состояния в состояние. В соответствии с этими эмпирическими распределениями строится вероятностная модель разладки и моделируются соответствующие траектории временного ряда.

  8. Грачев В.А., Найштут Ю.С.
    Сплошные среды из тонких пластин
    Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 655-670

    Представлена фрактальная система из тонких шарнирно соединенных пластинок, которая может быть изучена методами механики сплошной среды с внутренними степенями свободы. Конструкция является трансформирующейся: в начальном положении это практически одномерное многообразие малого диаметра, после развертки система занимает значительный объем. Геометрия сплошной среды исследуется методом подвижного репера. На основе уравнений структуры Картана выводятся соотношения, позволяющие определить геометрию введенных многообразий. В доказательствах существенно используется тот факт, что составляющие фрактал пластинки являются тонкими, а их длина мала по сравнению с габаритами системы. Изучается механика введенных сплошных сред, если шарниры между пластинками являются идеальными жесткопластическими и выполнены из материалов с памятью формы. Опираясь на теоремы о предельных нагрузках, вычисляются внутреннее давление, необходимое для развертывания пакета в объемную конструкцию, а также затраты тепла для возврата системы в первоначальное состояние.

    Просмотров за год: 2.
  9. В приближении однородной намагниченности построена математическая модель трехслойной ячейки памяти MRAM c осью анизотропии, расположенной перпендикулярно запоминающему ферромагнитному слою ячейки (перпендикулярная анизотропия). Предполагается, что первоначально намагниченность свободного слоя ячейки ориентирована вдоль оси анизотропии и соответствует состоянию «нуль». Одновременное мгновенное включение спин-поляризованного тока и магнитного поля воздействует на намагниченность свободного слоя и может перевести ее в противоположное положение, соответствующее состоянию «единица». Математическое описание эффекта основано на классическом векторном уравнении Ландау–Лифшица с диссипативным членом в форме Гильберта. В нашей модели учтены взаимодействия намагниченности с внешним магнитным полем и эффективными полями анизотропии и размагничивания, а также с током инжекции в форме Слончевского–Берже. Выведена система обыкновенных дифференциальных уравнений, описывающая динамику намагниченности в трехслойной вентильной структуре Co/Cu/Co в зависимости от управляющих параметров: величины тока инжекции и внешнего магнитного поля, параллельного оси анизотропии магнитных слоев. Показано, что при любых токах и полях система имеет два основных состояния равновесия, расположенных на оси, совпадающей с осью анизотропии. Установлено, что в данной системе, в отличие от системы с продольной анизотропией, дополнительные состояния равновесия отсутствуют. Проведен анализ устойчивости основных состояний равновесия по первому приближению. Построены бифуркационные диаграммы, характеризующие типы динамики вектора намагниченности свободного слоя. Проведена классификация фазовых портретов на единичной сфере в зависимости от управляющих параметров (тока и поля). Изучены особенности динамики вектора намагниченности в каждой из характерных областей бифуркационной диаграммы и численно, методом Рунге–Кутты, построены траектории переключения. Найдены комбинации управляющих параметров, при которых переключение невозможно. Найдены области существования устойчивых и неустойчивых предельных циклов системы. Аналитически определены значения пороговых токов переключения в зависимости от внешнего магнитного поля. Проведено сравнение значений порогового тока в моделях с продольной и перпендикулярной анизотропией при нулевом магнитном поле и показано, что в модели с перпендикулярной анизотропией ток переключения почти на порядок ниже, чем в модели с продольной анизотропией.

    Просмотров за год: 4. Цитирований: 1 (РИНЦ).
  10. Рассматривается известное эволюционное уравнение математической физики, которое в современной математической литературе принято называть уравнением Курамото–Сивашинского. В данной работе это уравнение изучается в первоначальной редакции авторов работ, где оно было предложено, вместе с однородными краевыми условиями Неймана. Изучен вопрос о существовании и устойчивости локальных аттракторов, сформированных пространственно-неоднородными решениями изучаемой краевой задачи. Данный вопрос стал особенно актуален в последнее время в связи с моделированием процесса формирования наноструктур на поверхности полупроводников под воздействием потока ионов или лазерного излучения.

    Изучен вопрос о существовании и устойчивости состояний равновесия второго рода двумя различными способами. В первом из них использован метод Галёркина. Второй подход основан на использовании строго обоснованных методов теории динамических систем с бесконечномерным фазовым пространством: метод интегральных многообразий, теория нормальных форм, асимптотические методы.

    В работе в целом повторен подход из известной работы Д. Армбрустера, Д. Гукенхеймера, Ф.Холмса, где использован подход, основанный на применении метода Галёркина. Результаты такого анализа расширены и развиты. Использование возможностей современных компьютеров помогло существенно дополнить анализ этой задачи. В частности, найти все решения в четырех- и пятичленных аппроксимациях Галёркина, которые для изучаемой краевой задачи следует интерпретировать как состояния равновесия второго рода. Также дан анализ их устойчивости в смысле определения А. М. Ляпунова.

    В данной работе проведено сравнение результатов, полученных с использованием метода Галёркина с результатами бифуркационного анализа краевой задачи на базе применения методов качественного анализа бесконечномерных динамических систем. Сравнение двух вариантов результатов показало некоторую ограниченность возможностей использования метода Галёркина.

    Просмотров за год: 27.
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.