Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Задачи численного моделирования динамики системы «почва–растение»
Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 445-465Рассмотрены современные математические модели динамики системы «почва–растение», составляющими которых выступают: растение сельскохозяйственного назначения, микроорганизмы ризосферы (прикорневой зоны растений), элементы минерального питания растений их подвижной и неподвижной форм. На основании анализа принятых положений разработана модель, в которой учитываются взаимосвязи и определенный согласованный характер совместных изменений ее составляющих. В частности, динамика содержащихся в растениях элементов их минерального питания и динамика биомассы растений определяются текущим содержанием в ризосфере внесенных сюда удобрений и отмершими продуктами жизнедеятельности ризосферных элементов (отмершие корни растений, опавшие листья (опад) и т. д.). Полагаются пространственная неподвижность растений и пространственная подвижность микро- организмов, механизм которой определяется здесь диффузией. Предлагаются формальные соотношения влияния суммарного воздействия на динамику растений сорняков (они характеризуют отдельный вид растений) и вредителей (они характеризуют отдельный вид микроорганизмов), где учитываются взаимные переходы элементов минерального питания из подвижной их формы в неподвижную. Для системы, где каждая из составляющих представлена только одним видом (удобрение, ассоциация микроорганизмов и растения представлены только одним видом), выполнено аналитическое исследование. Для однолетних культур сельскохозяйственного назначения разработана адаптация модели распространения волны в системе «ресурс–потребитель» (волны Колмогорова–Петровского–Пискунова). Реализация модели выполнена на примере динамики роста яровой пшеницы Красноуфимская-100 на торфяной низинной почве, куда предварительно были внесены фосфорные и калийные удобрения. Цифровой материал представлен массивом экспериментальных распределений биомассы растений и элементов минерального питания. Специфика экспериментального материала обусловила переход к модели, которая является редукцией сформулированной общей модели. Ее составляющими выступают распределение биомассы растений и содержание в них элементов минерального питания. Оценка адекватности модельных и экспериментальных распределений показала хорошую степень их соответствия.
-
Моделирование нетто-экосистемного обмена диоксида углерода сенокоса на осушенной торфяной почве: анализ сценариев использования
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1427-1449Нетто-экосистемный обмен (NEE) — ключевой компонент углеродного баланса, характеризующий экосистему как источник или сток углерода. В работе интерпретируются данные натурных измерений NEE и составляющих его компонентов (дыхания почвы — Rsoil, экосистемы — Reco и валового газообмена — GEE) сенокоса и залежи методами математического моделирования. Измерения проводились в ходе пяти полевых кампаний 2018 и 2019 гг. на осушенной части Дубненского болотного массива в Талдомском районе Московской области. После осушения для добычи торфа остаточная торфяная залежь (1–1.5 м) была распахана и впоследствии залужена под сенокосы. Измерение потоков CO2 проводили с помощью динамических камер: при ненарушенной растительности измеряли NEE и Reco, а при ее удалении — Rsoil. Для моделирования потоков CO2 была использована их связь с температурой почвы и воздуха, уровнем почвенно-грунтовых вод, фотосинтетически активной радиацией, подземной и надземной фитомассой растений. Параметризация моделей проведена с учетом устойчивости коэффициентов, оцененной методом статистического моделирования (бутстрэпа). Проведены численные эксперименты по оценке влияния различных режимов использования сенокоса на NEE. Установлено, что общий за сезон (с 15 мая по 30 сентября) NEE значимо не отличался на сенокосе без кошения (К0) и залежи, составив соответственно 4.5±1.0 и 6.2±1.4 тС·га–1·сезон–1. Таким образом, оба объекта являются источником диоксида углерода в атмосферу. Однократное в сезон кошение сенокоса (К1) приводит к росту NEE до 6.5±0.9, а двукратное (К2) — до 7.5±1.4 тС·га–1·сезон–1. Как при К1, так и при К2 потери углерода незначительно увели- чиваются в сравнении с К0 и оказываются близкими в сравнении с залежью. При этом накопленный растениями углерод частично переводится при кошении в сельскохозяйственную продукцию (величина скошенной фитомассы для К1 и К2 составляет 0.8±0.1 и 1.4±0.1 тС·га–1·сезон–1), в то время как на залежи его значительная часть возвращается в атмосферу при отмирании и последующем разложении растений.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"