Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'теория относительности':
Найдено статей: 24
  1. Киреенков А.А., Жаворонок С.И., Нуштаев Д.В.
    О моделях шины, учитывающих как деформированное состояние, так и эффекты сухого трения в области контакта
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 163-173

    Предложена новая приближенная модель качения деформируемого колеса с пневматиком, позволяющая учесть как усилия в пневматике, так и влияние сил сухого трения на устойчивость прямолинейного качения колеса при прогнозировании явления шимми. Модель основана на теории сухого трения с комбинированнойкине матикойотно сительного движения соприкасающихся тел, т. е. при одновременном качении, скольжении и верчении при учете реальнойф ормы области контакта и распределения контактного давления. Главный вектор и главный момент сил, возникающих при контактном взаимодействии с сухим трением, определяются путем интегрирования по области контакта. При этом контактное давление покоя при нулевых скоростях относительного поступательного движения и верчения и в отсутствие качения определяется из решения статической контактной задачи для пневматика с учетом его реальной структуры и физических свойств материалов. В работе использована конечно-элементная модель типового пневматика с продольным протектором. Расчет осуществлен при фиксированном внутреннем давлении наддува, заданной вертикальной силе и коэффициенте трения покоя, равном 0.5. Получены также решения задач о напряженно-деформированном состоянии пневматика при кинематическом нагружении в боковом направлении и при скручивании относительно вертикальной оси. Показано, что с достаточной степенью точности контактное взаимодействие пневматика с абсолютно жесткой опорной поверхностью можно представить в виде двух этапов — адгезии и проскальзывания, при этом, однако, форма пятна контакта остается близкой к круговой. Построены диаграммы, аппроксимирующие численные решения, для боковой силы и момента; на начальном участке взаимодействия зависимости линейны и соответствуют упругой деформации пневматика, на втором участке величины силы и момента постоянны и соответствуют силе сухого трения и моменту трения верчения. Для последних участков получены приближенные выражения для продольной и боковой силы трения, а также момента трения верчения в соответствии с теорией сухого трения с комбинированной кинематикой. Полученная модель может трактоваться как комбинация модели упруго деформируемого колеса по Келдышу, катящегося без проскальзывания, и жесткого колеса по Климову –Журавлёву, взаимодействующего с опорой посредством сил сухого трения.

  2. Никитюк А.С.
    Идентификация параметров вязкоупругих моделей клетки на основе силовых кривых и вейвлет-преобразования
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1653-1672

    Механические свойства клеток эукариот играют важную роль в условиях жизненного цикла и при развитии патологических процессов. В работе обсуждается проблема идентификации и верификации параметров вязкоупругих конститутивных моделей на основе данных силовой спектроскопии клеток эукариот. Предлагается использовать одномерное непрерывное вейвлет-преобразование для расчета ядра релаксации. Приводятся аналитические выкладки и результаты численных расчетов, позволяющие на основе экспериментально установленных силовых кривых и теоретических зависимостей «напряжение – деформация» с применением алгоритмов вейвлет-дифференцирования получать аналогичные друг другу функции релаксации. Анализируются тестовые примеры, демонстрирующие корректности программной реализации предложенных алгоритмов. Рассматриваются модели клетки, на примере которых демонстрируется применение предложенной процедуры идентификации и верификации их параметров. Среди них структурно-механическая модель с параллельно соединенными дробными элементами, которая является на данный момент наиболее адекватной с точки зрения соответствия данным атомно-силовой микроскопии широкого класса клеток, и новая статистико-термодинамическая модель, которая не уступает в описательных возможностях моделям с дробными производными, но имеет более ясный физический смысл. Для статистико-термодинамической модели подробно описывается процедура ее построения, которая в себя включает следующее: введение структурной переменной, параметра порядка, для описания ориентационных свойств цитоскелета клетки; постановку и решение статистической задачи для ансамбля актиновых филаментов представительного объема клетки относительно данной переменной; установление вида свободной энергии, зависящей от параметра порядка, температуры и внешней нагрузки. Также предложено в качестве модели представительного элемента клетки использовать ориентационно-вязкоупругое тело. Согласно теории линейной термодинамики получены эволюционные уравнения, описывающие механическое поведение представительного объема клетки, которые удовлетворяют основным термодинамическим законам. Также поставлена и решена задача оптимизации параметров статистико-термодинамической модели клетки, которая может сопоставляется как с экспериментальными данными, так и с результатами симуляций на основе других математических моделей. Определены вязкоупругие характеристики клеток на основе сопоставления с литературными данными.

  3. Дубинина М.Г.
    Пространственно-временные модели распространения информационно-коммуникационных технологий
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1695-1712

    В статье предложен пространственно-временной подход к моделированию диффузии информационно-коммуникационных технологий на основе уравнения Фишера – Колмогорова – Петровского – Пискунова, в котором кинетика диффузии описывается моделью Басса, широко применяемой для моделирования распространения инноваций на рынке. Для этого уравнения изучены его положения равновесия и на основе сингулярной теории возмущений получено приближенное решение в виде бегущей волны, т.е. решение, которое распространяется с постоянной скоростью, сохраняя при этом свою форму в пространстве. Скорость волны показывает, на какую величину за единичный интервал времени изменяется пространственная характеристика, определяющая данный уровень распространения технологии. Эта скорость существенно выше скорости, с которой происходит распространение за счет диффузии. С помощью построения такого автоволнового решения появляется возможность оценить время, необходимое субъекту исследования для достижения текущего показателя лидера.

    Полученное приближенное решение далее было применено для оценки факторов, влияющих на скорость распространения информационно-коммуникационных технологий по федеральным округам Российской Федерации. Вк ачестве пространственных переменных для диффузии мобильной связи среди населения рассматривались различные социально-экономические показатели. Полюсы роста, в которых возникают инновации, обычно характеризуются наивысшими значениями пространственных переменных. Для России таким полюсом роста является Москва, поэтому в качестве факторных признаков рассматривались показатели федеральных округов, отнесенные к показателям Москвы. Наилучшее приближение к исходным данным было получено для отношения доли затрат на НИОКР в ВРП к показателю Москвы, среднего за период 2000–2009 гг. Было получено, что для УФО на начальном этапе распространения мобильной связи отставание от столицы составило менее одного года, для ЦФО, СЗФО — 1,4 года, для ПФО, СФО, ЮФО и ДВФО — менее двух лет, для СКФО — немногим более двух лет. Кроме того, получены оценки времени запаздывания распространения цифровых технологий (интранета, экстранета и др.), применяемых организациями федеральных округов РФ, относительно показателей Москвы.

  4. Ершов Н.М., Попова Н.Н.
    Естественные модели параллельных вычислений
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 781-785

    Курс «Естественные модели параллельных вычислений», читаемый студентам старших курсов факультета ВМК МГУ, посвящен рассмотрению вопросов суперкомпьютерной реализации естественных вычислительных моделей и является, по сути, введением в теорию естественных вычислений (natural computing) относительно нового раздела науки, образовавшегося на стыке математики, информатики и естественных наук (прежде всего биологии). Тематика естественных вычислений включает в себя как классические разделы, например клеточные автоматы, так и относительно новые, появившиеся в последние 10–20 лет, например методы роевого интеллекта. Несмотря на свое биологическое «происхождение», все эти модели находят широчайшее применение в областях, связанных с компьютерной обработкой данных. Исследования в области естественных вычислений также тесно связаны с вопросами и технологиями параллельных вычислений. Изложение теоретического материала курса сопровождается рассмотрением возможных схем распараллеливания вычислений, а в практической части курса предполагается выполнение студентами программной реализации рассматриваемых моделей с использованием технологии MPI и проведение численных экспериментов по исследованию эффективности выбранных схем распараллеливания вычислений.

    Просмотров за год: 17. Цитирований: 2 (РИНЦ).
Страницы: « первая предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.