Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'суррогатное моделирование':
Найдено статей: 4
  1. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1037-1040
  2. При моделировании турбулентных течений неизбежно приходится сталкиваться с выбором между точностью и скоростью проведения расчетов. Так, DNS- и LES-модели позволяют проводить более точные расчеты, но являются более вычислительно затратными, чем RANS-модели. Поэтому сейчас RANS- модели являются наиболее часто используемыми при проведении практических расчетов. Но и расчеты с применением RANS-моделей могут быть значительно вычислительно затратными для задач со сложной геометрией или при проведении серийных расчетов по причине необходимости разрешения пристенного слоя. Существуют подходы, позволяющие значительно ускорить вычисления для RANS-моделей. Например, пристеночные функции или методы, основанные на декомпозиции расчетной области. Тем не менее они неизбежно теряют в точности за счет упрощения модели в пристенной области. Для того чтобы одновременно получить и вычислительно эффективную и более точную модель, может быть построена суррогатная модель на основании упрощенной модели и с использованием знаний о предыдущих расчетах, полученных более точной моделью, например из некоторых результатов серийных расчетов.

    В статье строится оператор перехода, позволяющий по результатам расчетов менее точной модели получить поле течения как при применении более точной модели. В данной работе результаты расчетов, полученные с помощью менее точной модели Спаларта–Аллмараса с применением пристенной декомпозиции, уточняются на основании расчетов схожих течений, полученных с помощью базовой модели Спаларта–Аллмараса с подробным разрешением пристенной области, с помощью методов машинного обучения. Оператор перехода от уточняемой модели к базовой строится локальным образом. То есть для уточнения результатов расчета в каждой точке расчетной области используются значения переменных пространства признаков (сами переменные поля и их производные) в этой точке. Для построения оператора используется алгоритм Random Forest. Эффективность и точность построенной суррогатной модели демонстрируется на примере двумерной задачи сверхзвукового турбулентного обтекания угла сжатия при различных числах Рейнольдса. Полученный оператор применяется к решению задач интерполяции и экстраполяции по числу Рейнольдса, также рассматривается топологический случай — интерполяция и экстраполяция по величине угла сжатия $\alpha$.

  3. Классические численные методы, применяемые для предсказания эволюции гидродинамических систем, предъявляют высокие требования к вычислительным ресурсам и накладывают ограничения на число вариантов геолого-гидродинамических моделей, расчет эволюции состояний которых возможно осуществлять в практических условиях. Одним из перспективных подходов к разработке эвристических оценок, которые могли бы ускорить рассмотрение вариантов гидродинамических моделей, является имитационное моделирование на основе обучающих данных. В рамках этого подхода методы машинного обучения используются для настройки весов искусственной нейронной сети (ИНС), предсказывающей состояние физической системы в заданный момент времени на основе начальных условий. В данной статье описаны оригинальная архитектура ИНС и специфическая процедура обучения, формирующие эвристическую модель двухфазного течения в гетерогенной пористой среде. Основанная на ИНС модель с приемлемой точностью предсказывает состояния расчетных блоков моделируемой системы в произвольный момент времени (с известными ограничениями) на основе только начальных условий: свойств гетерогенной проницаемости среды и размещения источников и стоков. Предложенная модель требует на порядки меньшего процессорного времени в сравнении с классическим численным методом, который послужил критерием оценки эффективности обученной модели. Архитектура ИНС включает ряд подсетей, обучаемых в различных комбинациях на нескольких наборах обучающих данных. Для обучения ИНС в рамках многоэтапной процедуры применены техники состязательного обучения и переноса весов из обученной модели.

  4. При моделировании турбулентных течений в практических приложениях часто приходится проводить серии расчетов для тел близкой топологии. Например, тел, отличающихся формой обтекателя. Применение сверточных нейронных сетей позволяет сократить количество расчетов серии, восстановив часть из них по уже проведенным расчетам. В работе предлагается метод, позволяющий применить сверточную нейронную сеть независимо от способа построения вычислительной сетки. Для этого проводится переинтерполяция поля течения на равномерную сетку вместе с самим телом. Геометрия тела задается с помощью функции расстояния со знаком и маскирования. Восстановление поля течения на основании части расчетов для схожих геометрий проводится с помощью нейронной сети типа UNet с пространственным механизмом внимания. Разрешение пристенной области, являющееся критически важным условием при турбулентном моделировании, производится на основании уравнений, полученных в методе пристенной декомпозиции.

    Демонстрация метода приводится для случая обтекания скругленной пластины турбулентным потоком воздуха с различным скруглением при фиксированных параметрах набегающего потока с числом Рейнольдса $Re = 10^5$ и числом Маха $M = 0,15$. Поскольку течения с такими параметрами набегающего потока можно считать несжимаемыми, исследуются непосредственно только компоненты скорости. Проводится сравнение полей течения, профилей скорости и трения на стенке, полученных суррогатной моделью и численно. Анализ проводится как на пластине, так и на скруглении. Результаты моделирования подтверждают перспективность предлагаемого подхода. В частности, было показано, что даже в случае использования модели на максимально допустимых границах ее применимости трение может быть получено с точностью до 90%. Также в работе проводится анализ построенной архитектуры нейронной сети. Полученная суррогатная модель сравнивается с альтернативными моделями, построенными на основании вариационного автоэнкодера или метода главных компонент с использованием радиальных базисных функций. На основании этого сравнения демонстрируются преимущества предложенного метода.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.