Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Моделирование процессов миграции населения: методы и инструменты (обзор)
Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1205-1232Миграция оказывает существенное влияние на формирование демографической структуры населения территорий, состояние региональных и локальных рынков труда. Быстрое изменение численности трудоспособного населения той или иной территории из-за миграционных процессов приводит к дисбалансу спроса и предложения на рынках труда, изменению демографической структуры населения. Миграция во многом является отражением социально-экономических процессов, происходящих в обществе. Поэтому становятся актуальными вопросы, связанные с изучением факторов миграции, направления, интенсивности и структуры миграционных потоков, прогнозированием их величины.
Для анализа, прогнозирования миграционных процессов и оценки их последствий часто используется математический инструментарий, позволяющий с нужной точностью моделировать миграционные процессы для различных территорий на основе имеющихся статистических данных. В последние годы как в России, так и в зарубежных странах появилось много научных работ, посвященных моделированию внутренних и внешних миграционных потоков с использованием математических методов. Следовательно, для формирования целостной картины основных тенденций и направлений исследований в этой области возникла необходимость в систематизации наиболее часто используемых методов и инструментов моделирования.
В представленном обзоре на основе анализа современных отечественных и зарубежных публикаций представлены основные подходы к моделированию миграции, основные составляющие методологии моделирования миграционных процессов — этапы, методы, модели и классификация моделей. Обзор содержит два раздела: методы моделирования миграционных процессов и модели миграции. В первом разделе приведено описание основных методов, используемых в процессе разработки моделей — эконометрических, клеточных автоматов, системно-динамических, вероятностных, балансовых, оптимизации и кластерного анализа. Во втором — выделены и описаны наиболее часто встречающиеся классы моделей — регрессионные, агент-ориентированные, имитационные, оптимизационные, веро- ятностные, балансовые, динамические и комбинированные. Рассмотрены особенности, преимущества и недостатки различных типов моделей миграционных процессов, проведен их сравнительный анализ и разработаны общие рекомендации по выбору математического инструментария для моделирования.
-
Экономико-математическая модель для анализа сбалансированности спроса и предложения инженерно-технических специалистов
Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1249-1273Проблема отсутствия сбалансированности спроса и предложения на рынке труда специалистов высшей и средней квалификации не только приводит к потерям человеческого капитала, но также в значительной мере препятствует инновационному и научно-технологическому развитию. Предварительный анализ показал, что во многом несбалансированность спроса и предложения труда инженерно-технических специалистов в России связана с процессом деиндустриализации и снижения престижности инженерной профессии, что привело к увеличению доли специалистов, не работающих по полученной специальности.
В работе предложена макроэкономическая модель, которая позволяет проводить сценарные прогнозы, а также с помощью решения оптимизационных задач определить условия достижения сбалансированности спроса и предложения труда инженерно-технических специалистов на среднесрочную перспективу. Модель состоит из 14 блоков, включая блоки для анализа спроса и предложения труда инженерно-технических специалистов, а также блоки для моделирования выпуска в промышленности, секторе услуг, экономике в целом, динамики инвестиций и основных фондов.
Результаты расчетов свидетельствуют о возможности существования сбалансированности спроса и предложения труда инженерно-технических специалистов при реализации сценариев одновременного роста доли инвестиций в основные фонды промышленности и относительной заработной платы в промышленности, а также показывают, что достижению сбалансированности способствует снижение оттока кадров из специальности, что также не противоречит выводам, полученным в результате экономического анализа. Следует отметить, что снижение доли специалистов, не работающих по специальности, может быть результатом как роста относительной заработной платы в промышленности и количества рабочих мест, так и реализации мероприятий по улучшению условий труда и повышения привлекательности профессии. Обобщая полученные результаты, в случае самого простого сценария, не учитывающего дополнительные меры по улучшению качества рабочих мест и повышению престижности профессии, для достижения сбалансированности требуются несколько менее высокие темпы роста инвестиций в промышленность, чем в сценариях, предусматривающих рост численности занятых инженерно-технических специалистов за счет увеличения доли работающих по специальности. В случае когда предполагается постепенное снижение доли не работающих по специальности инженерно-технических специалистов, возникает необходимость, вероятно, более высоких инвестиционных затрат в промышленности для привлечения специалистов и создания новых рабочих мест, а также дополнительных мер по повышению престижности профессии.
-
Объединение агентного подхода и подхода общего равновесия для анализа влияния теневого сектора на российскую экономику
Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 669-684В предлагаемой публикации используется объединение оптимизационного подхода общего равновесия, позволяющего объяснить поведение спроса, предложения и цен в экономике с несколькими взаимодействующими рынками, и мультиагентного имитационного подхода, формализующего поведение домашних хозяйств. Интегрирование двух этих подходов рассматривается на примере динамической стохастической модели, включающей теневой, неформальный и сектор домашних хозяйств, производящих блага для собственного потребления. Синтеза гентного подхода и подхода общего равновесия осуществляется с помощью компьютерной реализации рекурсивной обратной связи между микроагентами и макросредой. В предлагаемом исследовании для реализации взаимодействия микроагентов с макросредой используется один из самых популярных подходов, аппроксимирующий распределение доходов индивидуальных агентов дискретным и конечным набором моментов. Особенностью алгоритма реализации рекурсивной обратной связи является получение индивидуальных поведенческих функций микроагентов при их взаимодействии с макросредой, имитационное моделирование с помощью метода Монте-Карло индивидуальных доходов всей совокупности агентов с последующей агрегацией доходов. Параметры модели оцениваются с помощью байесовской эконометрики на статистических данных экономики России. Исходя изс равнения функций правдоподобия, сделан вывод, что исследуемая модель с неоднородными агентами более адекватно описывает эмпирические данные российской экономики. Поведение функций импульсного отклика основных переменных модели свидетельствует об антициклическом характере политики, связанной с наличием теневых секторов экономики (включая неформальный сектор и сектор производства домохозяйств) во время рецессий. Важным фактором является также то, что индивидуальность в поведении агентов способствует повышению эластичности предложения труда в исследуемых секторах экономики. Научной новизной исследования является объединение мультиагентного подхода и подхода общего равновесия для моделирования макроэкономических процессов на региональном и национальном уровне. Перспективы дальнейших исследований могут быть связаны с моделированием и компьютерной реализацией большего числа источников гетерогенности, позволяющих, в частности, описать поведение неоднородных групп агентов в секторах, связанных с производством товаров и услуг.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"