Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'социальная группа':
Найдено статей: 31
  1. От редакции
    Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 879-881
  2. От редакции
    Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 521-523
  3. От редакции
    Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 999-1002
  4. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1099-1101
  5. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 245-248
  6. Хавинсон М.Ю., Кулаков М.П., Фрисман Е.Я.
    Математическое моделирование динамики численности возрастных групп занятых на примере южных регионов Дальнего Востока России
    Компьютерные исследования и моделирование, 2016, т. 8, № 5, с. 787-801

    Предлагается нелинейная математическая модель динамики численности занятого населения разных возрастных групп с учетом их взаимодействий, которые рассматриваются по аналогии с популяционными взаимодействиями (конкуренция, дискриминация, помощь, угнетение и т. п.). Под взаимодействиями понимаются такие обобщенные социально-экономические механизмы, которые вызывают взаимосвязанные изменения численности занятых различных возрастных групп. Рассматриваются три возрастные группы занятого населения: молодые специалисты (15–29 лет), с опытом работы (30–49 лет), работники предпенсионного и пенсионного возраста (50 и старше). На основе статистических данных выполнена оценка параметров предложенной модели для южных регионов Дальневосточного федерального округа (ДФО). Анализ модели и модельных сценариев позволяет заключить, что наблюдаемые колебания численности разновозрастных работников на фоне стабильной общей численности занятого населения могут быть следствием сложных взаимодействий этих групп между собой. Вычислительные эксперименты, проведенные при полученных значениях параметров, позволили рассчитать темпы снижения численности и старения занятого населения, а также определить характер взаимодействий между возрастными группами занятых, прямо не отраженный в статистических данных. Установлено, что в целом по ДФО занятые 50 лет и старше находятся с работающей молодежью до 29 лет в отношениях дискриминации, занятые до 29 лет и 30–49 лет — в отношениях партнерства. Наиболее развитые регионы (Приморский край и Хабаровский край) демонстрируют «равномерную» конкуренцию среди разных возрастных групп занятого населения. Для Приморского края удалось выявить эффект перемешивания сценариев динамики, что характерно для систем, находящихся в состоянии структурной перестройки. Этот эффект выражается в том, что при значительном уменьшении миграционного притока занятых 30–49 лет будут формироваться длинные циклы занятости. Кроме того, изменение миграции сопровождается сменой типа взаимодействия — с дискриминации старшего поколения средним на дискриминацию среднего возраста старшим. Для менее развитых регионов Дальнего Востока (Амурская, Магаданская и Еврейская автономная области) характерны более низкие значения миграционного сальдо почти всех возрастов, а также дискриминация со стороны занятой молодежи до 29 лет других возрастных групп и дискриминация занятыми 30–49 лет старшего поколения.

    Просмотров за год: 4. Цитирований: 3 (РИНЦ).
  7. Хавинсон М.Ю., Кулаков М.П.
    Математическое моделирование динамики численности разновозрастных занятых в экономике региона
    Компьютерные исследования и моделирование, 2014, т. 6, № 3, с. 441-454

    В статье рассматривается нелинейная модель динамики численности разновозрастных занятых в экономике региона, построенная по принципам базового моделирования в эконофизике. Продемонстрированы сложные режимы динамики модели, накладывающие фундаментальные ограничения на средне- и долгосрочный прогноз численности занятых в регионе. По аналогии с биофизическим подходом предложена классификация социальных взаимодействий разновозрастных работников. Приведен модельный анализ оценки уровня занятости среди возрастных групп населения. Верификация модели проведена на статистических данных Еврейской автономной области.

    Просмотров за год: 4. Цитирований: 15 (РИНЦ).
  8. Басаева Е.К., Каменецкий Е.С., Хосаева З.Х.
    Оценка взаимодействия элиты и народа в постсоветских странах с использованием байесовского подхода
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1233-1247

    Рассматривалась ранее разработанная модель, описывающая динамику социальной напряженности общества, разделенного на две группы: элиту и народ. Эта модель учитывала влияние изменения экономической ситуации и взаимовлияние народа и элиты. Модель модифицирована путем включения в уравнение, описывающее напряженность народа, слагаемого, учитывающего адаптацию народа к создавшейся ситуации.

    Оценка коэффициентов модели является важной задачей, решение которой позволяет получить информацию о характере взаимодействии элиты и народа. Предполагалось, что при оптимальных значениях коэффициентов решение системы уравнений модели наиболее близко к значениям индикатора, характеризующего социальную напряженность. В качестве индикатора социальной напряженности в данной работе использовался нормированный уровень убийств.

    Исследуемая модель содержит семь коэффициентов. Два коэффициента, характеризующие степень влияния изменения экономической ситуации на элиту и народ, приняты равными между собой и одинаковыми для всех стран. Их оценки получены по упрощенной модели, учитывающей только изменение экономической ситуации и допускающей аналитическое решение.

    С помощью байесовского подхода проведена оценка остальных пяти коэффициентов модели для постсоветских стран. Для всех рассматриваемых стран априорные плотности вероятностей четырех коэффициентов принимались одинаковыми. Априорная плотность вероятности пятого коэффициента считалась зависящей от режима правления (авторитарный или переходный). Принималось, что расчетное значение социальной напряженности совпадает с соответствующим значением индикатора напряженности в тех случаях, когда разность между ними не превышала 5%.

    Проведенные расчеты показали, что для постсоветских стран получено хорошее совпадение расчетных значений напряженности народа и нормированного уровня убийств. Отметим, что совпадение удовлетворительно только в среднем, что естественно для достаточно грубой модели.

    В работе получены следующие основные результаты: под влиянием некоторых значительных событий в 40% постсоветских стран наблюдалось быстрое изменение характера взаимодействия элиты и народа; региональные особенности оказывают некоторое влияние на взаимодействие элиты и народа; тип правления не оказывает существенного влияния на взаимодействие элиты и народа; предложен способ оценки стабильности страны по величине коэффициентов модели.

  9. Фоновая социальная напряженность общества может быть количественно оценена по различным статистическим индикаторам. Модели, прогнозирующие динамику социальной напряженности, успешно применяются для описания различных социальных процессов. Когда количество рассматриваемых групп общества мало, динамику соответствующих индикаторов можно описать при помощи системы обыкновенных дифференциальных уравнений. При увеличении количества взаимодействующих элементов резко возрастает сложность задач, что существенно затрудняет их аналитическое исследование. Модель сплошной социальной стратификации получаетсяв результате перехода от дискретной цепочки взаимодействующих социальных слоев к их непрерывному распределению на некотором интервале, то есть перехода к модели сплошной среды. В этом случае напряженность распространяется локально, но в действительности элита общества влияет на все слои через средства массовой информации, а также интернет позволяет влиять всем группам на другие. Эти факторы можно учесть через слагаемое модели, описывающее негативное внешнее воздействие. В настоящей работе предложена модель сплошной социальной стратификации, описывающая динамику системы из двух социумов, связанных через процесс миграции населения. Предполагается, что из социального слоя системы-донора с наибольшей напряженностью происходит отток людей, переносящих свою напряженность в систему-акцептор, причем при миграции люди попадают в более бедные слои принимающего общества. Рассматриваетсяслуч ай пространственно однородных коэффициентов, что соответствует частному случаю небольшого социума. При помощи метода конечных объемов построена пространственнаяди скретизация задачи, корректно отражающая конечную скорость распространения напряженности в обществе. Выполнена проверка выбранной дискретизации путем сравненияч исленного решения с точными решениями вспомогательного уравнения нелинейной диффузии. Проведено численное исследование системы с миграцией при различных значениях параметров, проанализировано влияние интенсивности миграции на принимающее общество, найдены условия дестабилизации общества акцептора под влиянием миграции. Полученные в работе результаты могут быть применены при дальнейшем исследовании модели в случае пространственно неоднородных коэффициентов, что соответствует более реалистичной картине общества.

  10. Статья посвящена исследованию социально-экономических последствий от вирусных эпидемий в условиях неоднородности экономического развития территориальных систем. Актуальность исследования обусловлена необходимостью поиска оперативных механизмов государственного управления и стабилизации неблагоприятной эпидемио-логической ситуации с учетом пространственной неоднородности распространения COVID-19, сопровождающейся концентрацией инфекции в крупных мегаполисах и на территориях с высокой экономической активностью.

    Целью работы является разработка комплексного подхода к исследованию пространственной неоднородности распространения коронавирусной инфекции с точки зрения экономических последствий пандемии в регионах России. В работе особое внимание уделяется моделированию последствий ухудшающейся эпидемиологической ситуации на динамике экономического развития региональных систем, определению полюсов роста распространения коронавирусной инфекции, пространственных кластеров и зон их влияния с оценкой межтерриториальных взаимосвязей. Особенностью разработанного подхода является пространственная кластеризация региональных систем по уровню заболеваемости COVID-19, проведенная с использованием глобального и локальных индексов пространственной автокорреляции, различных матриц пространственных весов и матрицы взаимовлияния Л.Анселина на основе статистической информации Росстата. В результате проведенного исследования были выявлены пространственный кластер, отличающийся высоким уровнем инфицирования COVID-19 с сильной зоной влияния и устойчивыми межрегиональными взаимосвязями с окружающими регионами, а также сформировавшиеся полюса роста, которые являются потенциальными полюсами дальнейшего распространения коронавирусной инфекции. Проведенный в работе регрессионный анализ с использованием панельных данных позволил сформировать модель для сценарного прогнозирования последствий от распространения коронавирусной инфекции и принятия управленческих решений органами государственной власти.

    В работе выявлено, что увеличение числа заболевших коронавирусной инфекцией влияет на сокращение среднесписочной численности работников, снижение средней начисленной заработной платы. Предложенный подход к моделированию последствий COVID-19 может быть расширен за счет использования полученных результатов исследования при проектировании агент-ориентированной моделей, которые позволят оценить средне- и долгосрочные социально-экономические последствия пандемии с точки зрения особенностей поведения различных групп населения. Проведение компьютерных экспериментов позволит воспроизвести социально-демографическая структуру населения и оценить различные ограничительные меры в регионах России и сформировать пространственные приоритеты поддержки населения и бизнеса в условиях пандемии. На основе предлагаемого методологического подхода может быть разработана агент-ориентированная модель в виде программного комплекса, предназначенного для системы поддержки принятия решений оперативным штабам, центрам мониторинга эпидемиологической ситуации, органам государственного управления на федеральном и региональном уровнях.

Страницы: предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.