Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Математическое моделирование роста малоинвазивной опухоли с учетом инактивации антиангиогенным препаратом фактора роста эндотелия сосудов
Компьютерные исследования и моделирование, 2015, т. 7, № 2, с. 361-374Просмотров за год: 4. Цитирований: 1 (РИНЦ).Разработана математическая модель роста опухоли в ткани с учетом ангиогенеза и антиангиогенной терапии. В модели учтены как конвективные потоки в ткани, так и собственная подвижность клеток опухоли. Считается, что клетка начинает мигрировать, если концентрация питательного вещества падает ниже критического уровня, и возвращается в состояние пролиферации в области с высокой концентрацией пищи. Злокачественные клетки, находящиеся в состоянии метаболического стресса, вырабатывают фактор роста эндотелия сосудов (VEGF), стимулируя опухолевый ангиогенез, что увеличивает приток питательных веществ. В работе моделируется антиангиогенный препарат, который необратимо связывается с VEGF, переводя его в неактивное состояние. Проведено численное исследование влияния концентрации и эффективности антиангиогенного препарата на скорость роста и структуру опухоли. Показано, что сама по себе противоопухолевая антиангиогенная терапия способна замедлить рост малоинвазивной опухоли, но не способна его полностью остановить.
-
Численное моделирование внешнего обтекания спортсмена
Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 331-344Просмотров за год: 29.В работе описывается численное моделирование процесса внешнего обтекания подвижного спортсмена с целью определения его интегральных характеристик при различных режимах набегающего потока и режимах его движения. Численное моделирование выполнено с помощью программного комплекса вычислительной гидродинамики FlowVision, построенного на решении набора уравнений, описывающих движение жидкости и/или газа в расчетной области, в том числе уравнений сохранения массы, импульса и энергии, уравнений состояния, уравнений моделей турбулентности. Также учитываются подвижные границы расчетной области, изменяющаяся геометрическая форма которых моделирует фазы движения спортсмена, при прохождении трассы. Решение системы уравнений выполняется на декартовой сетке с локальной адаптацией в области высоких градиентов давлений или сложной геометрической формы границы расчетной области. Решение уравнений выполняется с помощью метода конечных объемов, с использованием расщепления по физическим процессам. Разработанная методика была апробирована на примере спортсменов, совершающих прыжки на лыжах с трамплина, в рамках подготовки к Олимпиаде в Сочи в 2014 году. Сравнение результатов численного и натурного эксперимента показало хорошую корреляцию. Технология моделирования состоит из следующих этапов:
1) разработка постановки задачи внешнего обтекания спортсмена в обращенной постановке, где неподвижный объект исследования обтекается набегающим потоком, со скоростью, равной скорости движения объекта;
2) разработка технологии изменения геометрической формы границы расчетной области в зависимости от фазы движения спортсмена; разработка методики численного моделирования, включающей в себя определение дискретизации по времени и пространству за счет выбора шага интегрирования и измельчения объемной расчетной сетки;
3) проведение серии расчетов с использованием геометрических и динамических данных спортсмена из сборной команды.
Описанная методика универсальна и применима для любых других видов спорта, биомеханических, природных и подобных им технических объектов.
-
Моделирование баллистики артиллерийского выстрела с учетом пространственного распределения параметров и противодавления
Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1123-1147В работе приводится сравнительный анализ результатов, полученных при различных подходах к моделированию процесса артиллерийского выстрела. В этой связи дана постановка основной задачи внутренней баллистики и ее частного случая задачи Лагранжа в осредненных параметрах, где в рамках допущений термодинамического подхода впервые учтены распределения давления и скорости газа по заснарядному пространству для канала переменного сечения. Представлена также постановка задачи Лагранжа в рамках газодинамического подхода, учитывающего пространственное (одномерное и двумерное осесимметричное) изменение характеристик внутрибаллистического процесса. Для численного решения системы газодинамических уравнений Эйлера применяется метод контрольного объема. Параметры газа на границах контрольных объемов опреде- ляются с использованием автомодельного решения задачи о распаде произвольного разрыва. На базе метода Годунова предложена модификация схемы Ошера, позволяющая реализовать алгоритм численного расчета со вторым порядком точности по координате и времени. Проведено сравнение решений, полученных в рамках термодинамического и газодинамического подходов, при различных параметрах заряжания. Изучено влияние массы снаряда и уширения камеры на распределение внутрибаллистических параметров выстрела и динамику движения снаряда. Показано, что термодинамический подход, по сравнению с газодинамическим подходом, приводит к систематическому завышению расчетной дульной скорости снаряда во всем исследованном диапазоне изменения параметров, при этом различие по дульной скорости может достигать 35 %. В то же время расхождение результатов, полученных в рамках одномерной и двумерной газодинамических моделей выстрела в этом же диапазоне изменения параметров, составляет не более 1.3 %.
Дана пространственная газодинамическая постановка задачи о противодавлении, описывающая изменение давления перед ускоряющимся снарядом при его движении по каналу ствола. Показано, что учет формы передней части снаряда в рамках двумерной осесимметричной постановки задачи приводит к существенному различию полей давления за фронтом ударной волны по сравнению с решением в рамках одномерной постановки задачи, где форму передней части снаряда учесть невозможно. Сделан вывод, что это может существенно повлиять на результаты моделирования баллистики выстрела при высоких скоростях метания.
-
Метод контрастного семплирования для предсказания библиографических ссылок
Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1317-1336В работе рассматривается задача поиска в научной статье фрагментов с недостающими библиографическими ссылками с помощью автоматической бинарной классификации. Для обучения модели предложен метод контрастного семплирования, новшеством которого является рассмотрение контекста ссылки с учетом границ фрагмента, максимально влияющего на вероятность нахождения в нем библиографической ссылки. Обучающая выборка формировалась из автоматически размеченных семплов — фрагментов из трех предложений с метками классов «без ссылки» и «со ссылкой», удовлетворяющих требованию контрастности: семплы разных классов дистанцируются в исходном тексте. Пространство признаков строилось автоматически по статистике встречаемости термов и расширялось за счет конструирования дополнительных признаков — выделенных в тексте сущностей ФИО, чисел, цитат и аббревиатур.
Проведена серия экспериментов на архивах научных журналов «Правоприменение» (273 статьи) и «Журнал инфектологии» (684 статьи). Классификация осуществлялась моделями Nearest Neighbours, RBF SVM, Random Forest, Multilayer Perceptron, с подбором оптимальных гиперпараметров для каждого классификатора.
Эксперименты подтвердили выдвинутую гипотезу. Наиболее высокую точность показал нейросетевой классификатор (95%), уступающий по скорости линейному, точность которого при контрастном семплировании также оказалась высока (91–94 %). Полученные значения превосходят результаты, опубликованные для задач NER и анализа тональности на данных со сравнимыми характеристиками. Высокая вычислительная эффективность предложенного метода позволяет встраивать его в прикладные системы и обрабатывать документы в онлайн-режиме.
-
Применение градиентных методов оптимизации для решения задачи Коши для уравнения Гельмгольца
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 417-444Статья посвящена изучению применения методов выпуклой оптимизации для решения задачи Коши для уравнения Гельмгольца, которая является некорректной, поскольку уравнение относится к эллиптическому типу. Задача Коши формулируется как обратная задача и сводится к задаче выпуклой оптимизации в гильбертовом пространстве. Оптимизируемый функционал и его градиент вычисляются с помощью решения краевых задач, которые, в свою очередь, корректны и могут быть приближенно решены стандартными численными методами, такими как конечно-разностные схемы и разложения в ряды Фурье. Экспериментально исследуются сходимость применяемого быстрого градиентного метода и качество получаемого таким образом решения. Эксперимент показывает, что ускоренный градиентный метод — метод подобных треугольников — сходится быстрее, чем неускоренный метод. Сформулированы и доказаны теоремы о вычислительной сложности полученных алгоритмов. Установлено, что разложения в ряды Фурье превосходят конечно-разностные схемы по скорости вычислений и улучшают качество получаемого решения. Сделана попытка использовать рестарты метода подобных треугольников после уменьшения невязки функционала вдвое. В этом случае сходимость не улучшается, что подтверждает отсутствие сильной выпуклости. Эксперименты показывают, что неточность вычислений более адекватно описывается аддитивной концепцией шума в оракуле первого порядка. Этот фактор ограничивает достижимое качество решения, но ошибка не накапливается. Полученные результаты показывают, что использование ускоренных градиентных методов оптимизации позволяет эффективно решать обратные задачи.
-
Исследование гидродинамической активации тромбоцитов в артериовенозных фистулах для гемодиализа
Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 703-721Методами математического моделирования изучена гидродинамическая активация тромбоцитов в артериовенозных фистулах, используемых для проведения гемодиализа. Цель работы — найти те конфигурации артериовенозных фистул, риск активации в которых снижен при типичных для фистул скоростей течения. В рамках развитого подхода условием гидродинамической активации считалось превышение кумулятивным напряжением сдвига определенного порога. Величина порога зависела от степени мультимерности макромолекул фактора фон Виллебранда, играющих роль гидродинамических сенсоров у тромбоцитов. В работе было изучено влияние ряда представляющих интерес параметров артериовенозных фистул, таких как величина анастомозного угла, интенсивность кровотока, а также мультимерность макромолекул фактора фон Виллебранда, на активацию тромбоцитов. Построены параметрические диаграммы, позволяющие выделять области параметров, соответствующие наличию или отсутствию гидродинамической активации тромбоцитов. Получены скейлинговые соотношения, характеризующие критические кривые на параметрических диаграммах. Анализ влияния величины анастомозного угла на гидродинамическую активацию тромбоцитов показал, что тупые анастомозные углы должны в меньшей мере приводить к активации, чем острые. Исследование различных типов соединения артерий и вен в артериовенозных фистулах показало, что к числу наиболее безопасных относится конфигурация «конец вены в конец артерии». Для всех исследованных конфигураций артериовенозных фистул критические кривые, разделяющие области на параметрических диаграммах, являются монотонно убывающими функциями от степени мультимерности фактора фон Виллебранда. Выяснилось, что интенсивность кровотока через фистульную вену оказывает существенное влияние на вероятность запуска тромбообразования, в то время как направление течения через дистальную артерию значимо не сказывается на активации тромбоцитов. Полученные результаты позволяют определять конфигурации фистул, наиболее безопасные с точки зрения запуска тромбообразования. Авторы полагают, что результаты работы могут представлять интерес для врачей, выполняющих хирургические операции по созданию артериовенозных фистул для гемодиализа. В заключении обсуждается ряд клинических приложений результатов.
-
Неявный алгоритм решения уравнений движения несжимаемой жидкости
Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 1009-1023Для решения уравнений Навье – Стокса в случае несжимаемых течений разработано большое количество методов, наиболее популярными из которых являются методы с коррекцией скорости по алгоритму SIMPLE, аналогом которого является метод расщепления по физическим переменным. Данные методы, разработанные еще в прошлом веке, использовались для решения достаточно простых задач — расчета как стационарных течений, так и нестационарных, в которых границы расчетной области были неподвижны. В настоящее время задачи вычислительной гидродинамики существенно усложнились. Интерес представляют задачи с движением тел в расчетной области, движением контактных границ, кавитацией и задачи с динамической локальной адаптацией расчетной сетки. При этом расчетная сетка меняется, что приводит к нарушению условия дивергентности скорости на ней. Поскольку дивергентные скорости используются не только для уравнений Навье – Стокса, но и для всех остальных уравнений математической модели движения жидкости — моделей турбулентности, массопереноса и сохранения энергии, нарушение этого условия ведет к численным ошибкам и, зачастую, к расхождению вычислительного алгоритма.
В статье представлен неявный метод расщепления по физическим переменным, который использует дивергентные скорости с данного шага по времени для решения несжимаемых уравнений Навье – Стокса. Метод разработан для расчета течений при наличии подвижных и контактных границ, моделируемых в постановке Эйлера. Метод позволяет проводить расчеты с шагом интегрирования, на порядки превышающем явный шаг по времени (число Куранта – Фридрихcа – Леви $CFL\gg1$). В данной статье представлен вариант метода для несжимаемых течений. Вариант метода, позволяющий рассчитывать движение жидкости и газа при любых числах Маха, будет опубликован в ближайшее время. Метод для полностью сжимаемых течений реализован в программном комплексе FlowVision.
В статье приводятся результаты численного решения классической задачи обтекания кругового цилиндра при малых числах Рейнольдса ($50<Re<140$), при которых ламинарное обтекание цилиндра становиться нестационарным и образуется дорожка Кармана. Показано хорошее совпадение расчетов с экспериментальными данными, опубликованными в классических работах Ван-Дайка и Танеды.
-
Разработка гибридной имитационной модели сборочного цеха
Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1359-1379В представленной работе разработана гибридная имитационная модель сборочного цеха в среде AnyLogic, которая позволяет подбирать оптимальные параметры производственной системы. Для построения гибридной модели использовались подходы, объединяющие дискретно-событийное моделирование и агентное в единую модель с интегрирующим взаимодействием. В рамках данной работы описан механизм функционирования сложной производственной системы, состоящей из нескольких участников-агентов. Каждому агенту соответствует класс, в котором задается определенный набор параметров агента. В имитационной модели были учтены три основные группы операции, выполняющиеся последовательно, определена логика работы с забракованными комплектами. Процесс сборки изделия представляет собой процесс, протекающий в многофазной разомкнутой системе массового обслуживания с ожиданием. Также есть признаки замкнутой системы — потоки брака для повторной обработки. При создании распределительной системы в сегменте окончательного контроля используются законы выполнения заявок в очереди типа FIFO. Для функциональной оценки производственной системы в имитационной модели включены несколько функциональных переменных, описывающих количество готовых изделий, среднее время подготовки изделий, количество и доля брака, результат моделирования для проведения исследований, а также функциональные переменные, в которых будут отображаться расчетные коэффициенты использования. Были проведены серии экспериментов по моделированию с целью изучения влияния поведения агентов системы на общие показатели эффективности производственной системы. В ходе эксперимента было установлено, что на показатель среднего времени подготовки изделия основное влияние оказывают такие параметры, как средняя скорость подачи комплекта заготовки, среднее время выполнения операций. На заданном промежутке ограничений удалось подобрать оптимальный набор параметров, при котором удалось достичь наиболее эффективной работы сборочной линии. Данный эксперимент подтверждает основной принцип агентного моделирования: децентрализованные агенты вносят личный вклад и оказывают влияние на работу всей моделируемой системы в целом. Вре зультате проведенных экспериментов, благодаря подбору оптимального набора параметров, удалось улучшить основные показатели функционирования сборочного цеха, а именно: увеличить показатель производительности на 60%; снизить показатель средней продолжительности сборки изделия на 38%.
-
Влияние направленных перемещений хищника на формирование пространственных структур в модели трехвидового сообщества с учетом всеядности хищника
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1617-1634Рассматривается модель, описывающая пространственно-временную динамику сообщества, состоящего из трех популяций, представляющих звенья трофической цепи. Локальные взаимодействия популяций строятся по типу «хищник – жертва», причем хищник потребляет не только жертву, но и ресурс, составляющий рацион жертвы. В предыдущей работе автором был проведен анализ модели без учета пространственной неоднородности. Данное исследование продолжает модельное изучение сообщества, учитывая диффузию особей, а также направленные перемещения хищника. Предполагается, что хищник реагирует на пространственное изменение ресурса и жертвы, занимая области с более высокой плотностью или избегая их. В модели такое поведение описывается адвективным членом со скоростью, пропорциональной градиенту плотности ресурса и жертвы. Система рассматривается в одномерной области в предположении нулевых потоков через границу. Динамика модели определяется устойчивостью системы в окрестности пространственно-однородного равновесия к малым пространственно-неоднородным возмущениям. В работе проведен анализ возможности возникновения в системе волновой неустойчивости, приводящей к возникновению автоволн и неустойчивости Тьюринга, в результате которой образуются стационарные структуры. Получены достаточные условия существования обоих видов неустойчивости, определяющие границы области значений коэффициентов таксиса, при которых система может потерять устойчивость. Анализ влияния параметров локальной кинетики модели на возможность образования пространственных структур показал, что при положительном таксисе на ресурс возможна лишь неустойчивость Тьюринга, а при отрицательном — оба вида неустойчивости. Для поиска численного решения системы использован метод линий с расщеплением разностного оператора по физическим процессам. Пространственно-временная динамика системы представлена в нескольких вариантах, реализующих один из типов неустойчивости. В случае положительного таксиса на жертву в областях меньшего размера возможно как реализация автоволнового режима, так и образование стационарных структур; с увеличением области тьюринговы структуры не образуются. Если же таксис на жертву отрицательный, то стационарные структуры возникают в областях любого размера, периодические структуры появляются только в более крупных областях.
-
Моделирование транспортных потоков на основе квазигазодинамического подхода и теории клеточных автоматов с использованием суперкомпьютеров
Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 175-194Целью исследования являются моделирование динамики автотранспортных потоков на транспортных сетях мегаполисов и систематизация современного состояния дел в этой области. Во введении указывается, что на первый план выходит развитие интеллектуальных транспортных систем, которые становятся неотъемлемой частью современных транспортных технологий. Основным ядром таких систем являются адекватные математические модели, максимально приближенные к реальности. Отмечается, что в связи с большим объемом вычислений необходимо использование суперкомпьютеров, следовательно, создание специальных пар аллельных алгоритмов. В начале статьи приводится современная классификация моделей, обсуждаются отличительные особенности каждого класса со ссылками на соответствующие примеры. Далее основное внимание уделяется созданным авторами статьи разработкам в области как макроскопического, так и микроскопического моделирования и определению места этих разработок в приведенной выше классификации. Макроскопическая модель основана на приближении сплошной среды и использует идеологию квазигазодинамических систем уравнений. Указаны ее достоинства по сравнению с существующими моделями этого класса. Система уравнений модели представлена как в одномерном варианте, но с возможностью исследования многополосного движения, так и в двумерном варианте, с введением понятия боковой скорости, то есть скорости перестроения из полосы в полосу. Второй вариант позволяет проводить вычисления в расчетной области, соответствующей реальной геометрии дороги. Представлены тестовые расчеты движения по дороге с локальным расширением и по дороге с системой светофоров с различными светофорными режимами. Расчеты позволили в первом случае сделать интересные выводы о влиянии расширения на пропускную способность дороги в целом, а во втором случае — выбрать оптимальный режим для получения эффекта «зеленой волны». Микроскопическая модель основана на теории клеточных автоматов и однополосной модели Нагеля – Шрекенберга и обобщена авторами на случай многополосного движения. В модели реализованы различные поведенческие стратегии водителей. В качестве теста моделируется движение на реальном участке транспортной сети в центре г. Москвы. Причем для грамотного прохождения транспортных узлов сети в соответствии с правилами движения реализованы специальные алгоритмы, адаптированные для параллельных вычислений. Тестовые расчеты выполнены на суперкомпьютере К-100 ЦКП ИПМ им. М. В. Келдыша РАН.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"