Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'скользящий контроль':
Найдено статей: 3
  1. Бахвалов Ю.Н., Копылов И.В.
    Обучение и оценка обобщающей способности методов интерполяции
    Компьютерные исследования и моделирование, 2015, т. 7, № 5, с. 1023-1031

    В данной статье исследуются методы машинного обучения с определенным видом решающего правила. К ним относятся интерполяция по методу обратно взвешенных расстояний, метод интерполяции радиальными базисными функциями, метод многомерной интерполяции и аппроксимации на основе теории случайных функций, кригинг. Показано, что для данных методов существует способ быстрого переобучения «модели» при добавлении новых данных к существующим. Под «моделью» понимается построенная по обучающим данным интерполирующая или аппроксимирующая функция. Данный подход позволяет уменьшить вычислительную сложность построения обновленной «модели» с $O(n^3)$ до $O(n^2)$. Также будет исследована возможность быстрого оценивания обобщающих возможностей «модели» на обучающей выборке при помощи метода скользящего контроля leave-one-out cross-validation, устранив главный недостаток такого подхода — необходимость построения новой «модели» при каждом удалении элемента из обучающей выборки.

    Просмотров за год: 7. Цитирований: 5 (РИНЦ).
  2. В данной статье исследуется метод машинного обучения на основе теории случайных функций. Одной из основных проблем данного метода является то, что вид решающего правила модели метода, построенной на данных обучающей выборки, становится более громоздким при увеличении количества примеров выборки. Решающее правило модели является наиболее вероятной реализацией случайной функции и представляется в виде многочлена с количеством слагаемых, равным количеству обучающих элементов выборки. В статье будет показано, что для рассматриваемого метода существует быстрый способ сокращения обучающей выборки и, соответственно, вида решающего правила. Уменьшение примеров обучающей выборки происходит за счет поиска и удаления малоинформативных (слабых) элементов, которые незначительно влияют на итоговый вид решающей функции, и шумовых элементов выборки. Для каждого $(x_i,y_i)$-го элемента выборки было введено понятие значимости, выражающееся величиной отклонения оцененного значения решающей функции модели в точке $x_i$, построенной без $i$-го элемента, от реального значения $y_i$. Будет показана возможность косвенного использования найденных слабых элементов выборки при обучении модели метода, что позволяет не увеличивать количество слагаемых в полученной решающей функции. Также в статье будут описаны проведенные эксперименты, в которых показано, как изменение количества обучающих данных влияет на обобщающую способность решающего правила модели в задаче классификации.

    Просмотров за год: 5.
  3. Борисова Л.Р., Кузнецова А.В., Сергеева Н.В., Сенько О.В.
    Применение методов машинного обучения для сравнения компаний Арктической зоны РФ по экономическим критериям в соответствии с рейтингом Полярного индекса
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 201-215

    В работе проведен сравнительный анализ предприятий Арктической зоны Российской Федерации (АЗ РФ) по экономическим показателям в соответствии с рейтингом Полярного индекса. В исследование включены числовые данные 193 предприятий, находящихся в АЗ РФ. Применены методы машинного обучения, как стандартные, из открытых ресурсов, так и собственные оригинальные методы — метод оптимально достоверных разбиений (ОДР), метод статистически взвешенных синдромов (СВС). Проведено разбиение с указанием максимального значения функционала качества, в данном исследовании использовалось простейшее семейство разнообразных одномерных разбиений с одной-единственной граничной точкой, а также семейство различных двумерных разбиений с одной граничной точкой по каждой из двух объединяющих переменных. Перестановочные тесты позволяют не только оценивать достоверность данных выявленных закономерностей, но и исключать из множества выявленных закономерностей разбиения с избыточной сложностью.

    Использование метода ОДР на одномерных показателях выявило закономерности, которые связывают номер класса с экономическими показателями. Также в приведенном исследовании представлены закономерности, которые выявлены в рамках простейшей одномерной модели с одной граничной точкой и со значимостью не хуже чем $p < 0.001$.

    Для достоверной оценки подобной диагностической способности использовали так называемый метод скользящего контроля. В результате этих исследований был выделен целый набор методов, которые обладали достаточной эффективностью.

    Коллективный метод по результатам нескольких методов машинного обучения показал высокую значимость экономических показателей для разделения предприятий в соответствии с рейтингом Полярного индекса.

    Наше исследование доказало и показало, что те предприятия, которые вошли в топ рейтинга Полярного индекса, в целом распознаются по финансовым показателям среди всех компаний Арктической зоны. Вместе с тем представляется целесообразным включение в анализ также экологических и социальных факторов.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.