Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Гиперграфовый подход в декомпозиции сложных технических систем
Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1007-1022В статье рассматривается математическая модель декомпозиции сложного изделия на сборочные единицы. Это важная инженерная задача, которая влияет на организацию дискретного производства и его и оперативное управление. Приведен обзор современных подходов к математическому моделированию и автоматизированному синтезу декомпозиций. В них математическими моделями структур технических систем служат графы, сети, матрицы и др. Эти модели описывают механическую структуру как бинарное отношение на множестве элементов системы. Геометрическая координация и целостность машин и механических приборов в процессе изготовления достигаются при помощи базирования. В общем случае базирование может осуществляться относительно нескольких элементов одновременно. Поэтому оно представляет собой отношение переменной местности, которое не может быть корректно описано в терминах бинарных математических структур. Описана новая гиперграфовая модель механической структуры технической системы. Эта модель позволяет дать точную и лаконичную формализацию сборочных операций и процессов. Рассматриваются сборочные операции, которые выполняются двумя рабочими органами и заключаются в реализации механических связей. Такие операции называются когерентными и секвенциальными. Это преобладающий тип операций в современной промышленной практике. Показано, что математическим описанием такой операции является нормальное стягивание ребра гиперграфа. Последовательность стягиваний, трансформирующая гиперграф в точку, представляет собой математическую модель сборочного процесса. Приведены доказанные автором две важные теоремы о свойствах стягиваемых гиперграфов и подграфов. Введено понятие $s$-гиперграфа. $S$-гиперграфы являются корректными математическими моделями механических структур любых собираемых технических систем. Декомпозиция изделия на сборочные единицы поставлена как разрезание $s$-гиперграфа на $s$-подграфы. Задача разрезания описана в терминах дискретного математического программирования. Получены математические модели структурных, топологических и технологических ограничений. Предложены целевые функции, формализующие оптимальный выбор проектных решений в различных ситуациях. Разработанная математическая модель декомпозиции изделия является гибкой и открытой. Она допускает расширения, учитывающие особенности изделия и его производства.
-
Модель динамической ловушки для описания человеческого контроля в рамках «стимул – реакция»
Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 79-87В статье предлагается новая модель динамической ловушки типа «стимул – реакция», которая имитирует человеческий контроль динамических систем, где ограниченная рациональность человеческого сознания играет существенную роль. Детально рассматривается сценарий, в котором субъект модулирует контролируемую переменную в ответ на определенный стимул. В этом контексте ограниченная рациональность человеческого сознания проявляется в неопределенности восприятия стимула и последующих действий субъекта. Модель предполагает, что когда интенсивность стимула падает ниже (размытого) порога восприятия стимула, субъект приостанавливает управление и поддерживает контролируемую переменную вблизи нуля с точностью, определяемую неопределенностью ее управления. Когда интенсивность стимула превышает неопределенность восприятия и становится доступной человеческому сознания, испытуемый активирует контроль. Тем самым, динамику системы можно представить как чередующуюся последовательность пассивного и активного режимов управления с вероятностными переходами между ними. Более того, ожидается, что эти переходы проявляют гистерезис из-за инерции принятия решений.
В общем случае пассивный и активный режимы базируются на различных механизмах, что является проблемой для создания эффективных алгоритмов их численного моделирования. Предлагаемая модель преодолевает эту проблему за счет введения динамической ловушки типа «стимул – реакция», имеющей сложную структуру. Область динамической ловушки включает две подобласти: область стагнации динамики системы и область гистерезиса. Модель основывается на формализме стохастических дифференциальных уравнений и описывает как вероятностные переходы между пассивным и активным режимами управления, так и внутреннюю динамику этих режимов в рамках единого представления. Предложенная модель воспроизводит ожидаемые свойства этих режимов управления, вероятностные переходы между ними и гистерезис вблизи порога восприятия. Кроме того, в предельном случае модель оказывается способной имитировать человеческий контроль, когда (1) активный режим представляет собой реализацию «разомкнутого» типа для локально запланированных действий и (2) активация контроля возникает только тогда, когда интенсивность стимула существенно возрастает и риск потери контроля системы становится существенным.
-
Дискретная математическая модель системы «власть–общество–экономика» на основе клеточного автомата
Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 561-572Просмотров за год: 8. Цитирований: 1 (РИНЦ).Данная работа посвящена модификации ранее предлагавшегося автором дискретного варианта модели А. П. Михайлова «власть–общество». Эта модификация учитывает социально-экономическое развитие системы и коррупцию в ней по аналогии с непрерывной моделью «власть–общество–экономика–коррупция», но имеет в своей основе стохастический клеточный автомат, описывающий динамику распределения власти в иерархии. Новая версия модели построена путем введения в пространство состояний клетки ранее предлагавшегося клеточного автомата переменных, соответствующих численности населения, объему экономического производства, объему основных производственных фондов и уровню коррупции. Структура социально-экономических зависимостей в системе заимствована из модели Солоу и непрерывной детерминированной модели «власть–общество–экономика–коррупция», однако особенностью новой модели является ее гибкость, позволяющая рассматривать в ее рамках региональные различия во всех параметрах социально-экономического развития, различные модели производства и динамики народонаселения, а также транспортные связи между регионами. Построена имитационная система, включающая три уровня властной иерархии, пять регионов и 100 муниципалитетов, при помощи которой проведен ряд вычислительных экспериментов. В ходе этого исследования получены результаты, указывающие на изменение характера динамики распределения власти при повышении уровня коррупции. Если в отсутствие коррупции (аналогично предыдущей версии модели) распределение власти в иерархии асимптотически стремится к одному из стационарных состояний, то при наличии высокого уровня коррупции объем власти в системе испытывает нерегулярные колебательные изменения и лишь в дальнейшем также сходится к стационарному состоянию. Данные результаты можно содержательно интерпретировать как снижение стабильности властной иерархии при усилении коррупции.
-
Пространственно-временная динамика и принцип конкурентного исключения в сообществе
Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 815-824Проблема видового разнообразия является предметом постоянного внимания со стороны биологов и экологов. Она исследуется и в моделях сообществ. Принцип конкурентного исключения имеет прямое отношение к этой проблеме. Он означает невозможность сосуществования в сообществе видов, когда их количество превосходит число влияющих взаимно независимых факторов. Известный советский микробиолог Г. Ф. Гаузе высказал и экспериментально обосновал схожий принцип о том, что каждый вид имеет свою собственную экологическую нишу и никакие два разных вида не могут занять одну и ту же экологическую нишу. Если под влияющими факторами понимать плотностнозависимые контролирующие рост факторы и экологическую нишу описывать с помощью этих факторов, то принцип Гаузе и принцип конкурентного исключения, по сути, идентичны. К настоящему времени известны многие примеры нарушения этого принципа в природных системах. Одним из таких примеров является сообщество видов планктона, сосуществующих на ограниченном пространстве с небольшим числом влияющих факторов. В современной экологии данный парадокс известен как парадокс планктона или парадокс Хатчинсона. Объяснения этому варьируют от неточного выявления набора факторов до различных видов пространственной и временной неоднородностей. Для двухвидового сообщества с одним фактором влияния с нелинейными функциями роста и смертности доказана возможность устойчивого сосуществования видов. В этой работе рассматриваются ситуации нелинейности и пространственной неоднородности в двухвидовом сообществе с одним фактором влияния. Показано, что при нелинейных зависимостях от плотности популяции устойчивое стационарное сосуществование видов возможно в широком диапазоне изменения параметров. Пространственная неоднородность способствует нарушению принципа конкурентного исключения и в случаях неустойчивости стационарного состояния по Тьюрингу. В соответствии с общей теорией возникают квазистационарные устойчивые структуры сосуществования двух видов при одном влияющем факторе. В работе показано, что неустойчивость по Тьюрингу возможна, если хотя бы один из видов оказывает положительное влияние на фактор. Нелинейность модели по фазовым переменным и ее пространственная распределенность порождают нарушения принципа конкурентного исключения (и принципа Гаузе) как в виде устойчивых пространственно-однородных состояний, так и в виде квазиустойчивых пространственно-неоднородных структур при неустойчивом стационарном состоянии сообщества.
Ключевые слова: сообщество, видовая структура, математическая модель, фактор, неустойчивость по Тьюрингу.Просмотров за год: 11. -
Разработка конструкции, моделирование и управление шарниром с переменной упругостью на основе магнитной пружины кручения
Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1323-1347С появлением промышленных роботов робототехника приобретает значение во всемирном масштабе как в экономике, так и в науке. Однако, их возможности сильно ограничены, особенно в части выполнения контактных задач, в которых есть необходимость регулирования или по крайней мере ограничения усилия в контакте. В определенный момент было замечено, что упругость в механической цепи шарнира, считавшаяся ранее негативным фактором, в этомо тношении напротив является полезной. Данное наблюдение привело к появлению роботов с упругими шарнирами, пригодных к выполнению контактных задач и кооперативной деятельности в частности, в результате чего их распространение сегодня становится всё шире. Многие исследователи стремились реализовать подобные устройства не только в виде простейших последовательных упругих приводов, но и посредствомбо лее сложных шарниров с переменной упругостью (ШПУ), способных изменять собственную механическую жесткость. Все упругие шарниры обеспечивают в определенной мере устойчивость к ударным нагрузкам и безопасность взаимодействия с объектами внешней среды, однако изменение жесткости позволяет получить дополнительные преимущества, такие как энерго-эффективность и адаптируемость к задачам.
В настоящей статье представлена новая реализация ШПУ, с магнитной муфтой в качестве упругого элемента. Магнитная передача является бесконтактной, и потому обладает преимуществом с точки зрения снижения чувствительности к смещению и рассогласованию осей. Описание модели трения также упрощается. Кроме того, данная муфта обладает характеристикой жесткости, которая не только не возрастает резко с повышением нагрузки, но становится более плавной, и даже снижается после точки максимума. Вследствие этого, при достижении максимального момента, муфта проскальзывает, после чего положение равновесия уже определяется новой парой полюсов. В итоге данное решение снижает риск механического повреждения. В статье подробно рассмотрен процесс разработки шарнира, представлена его математическая модель. Также предложена реализация системы управления шарниром и проведено компьютерное моделирование, подтверждающее принятые в разработке решения.
-
Использование методов теории управления для формирования рыночных структур
Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 839-859Просмотров за год: 4. Цитирований: 4 (РИНЦ).В статье рассматриваются методы формирования рыночных структур при ориентации участников возникающих рынков на максимально возможные темпы роста, а также при ориентации их на максимизацию показателей экономической эффективности. Для первого случая разработан метод достижения желаемой структуры рынка, основанный на использовании принципов теории систем с переменной структурой. Для случая ориентации фирм на достижение максимума NPV рассматривается игровой подход к поддержанию конкурентной среды, основанный на эффективном методе расчета оптимальных по Нэшу–Курно и по Штакельбергу стратегий с помощью аппарата Z-преобразования.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"