Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Обзор по тематике клеточных автоматов на базе современных отечественных публикаций
Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 9-57Просмотров за год: 58.Проведен анализ отечественных публикаций за 2013–2017 гг. включительно, посвященных клеточным автоматам (КА). Большая их часть связана с математическим моделированием. Наукометрическими графиками за 1990–2017 гг. доказана актуальность тематики. Обзор позволяет выделить персоналии и научные направления/школы в современной российской науке, выявить их оригинальность или вторичность по сравнению с мировым уровнем. За счет выбора национальной, а не мировой, базы публикаций обзор претендует на полноту (из 526 просмотренных ссылок научным значением обладают около 200).
В приложении к обзору даются первичные сведения о КА — игра «Жизнь», теорема о садах Эдема, элементарные КА (вместе с диаграммой де Брюина), блочные КА Марголуса, КА с альтернацией. Причем акцентируется внимание на трех важных для моделирования семантиках КА — традициях фон Неймана, Цузе и Цетлина, а также показывается родство с концепциями нейронных сетей и сетей Петри. Выделены условные 10 работ по КА, с которыми должен быть знаком любой специалист по КА. Некоторые важные работы 1990-х гг. и более поздние перечислены во введении.
Затем весь массив публикаций разбит на рубрики: «Модификации КА и другие сетевые модели» (29 %), «Математические свойства КА и связь с математикой» (5 %), «Аппаратные реализации» (3 %), «Программные реализации» (5 %), «Обработка данных, распознавание и криптография» (8 %), «Механика, физика и химия» (20 %), «Биология, экология и медицина» (15 %), «Экономика, урбанистика и социология» (15 %). В скобках указана доля тематики в массиве. Отмечается рост публикаций по КА в гуманитарной сфере, а также появление гибридных подходов, уводящих в сторону от классических КА.
-
Свойство устойчивости статистического распределения Райса: теория и применение в задачах измерения фазового сдвига сигналов
Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 475-485В работе рассматриваются особенности статистического распределения Райса, обусловливающие возможность его эффективного применения при решении задач высокоточных фазовых измерений в оптике. Дается строгое математическое доказательство свойства устойчивости статистического распределения Райса на примере рассмотрения разностного сигнала, а именно: доказано, что сумма или разность двух райсовских сигналов также подчиняются распределению Райса. Кроме того, получены формулы для параметров райсовского распределения результирующего суммарного или разностного сигнала. На основании доказанного свойства устойчивости распределения Райса в работе разработан новый оригинальный метод высокоточного измерения разности фаз двух квазигармонических сигналов. Этот метод базируется на статистическом анализе измеренных выборочных данных для обоих амплитуд сигналов и амплитуды третьего сигнала, представляющего собой разность сопоставляемых по фазе сигналов. Искомый фазовый сдвиг двух квазигармонических сигналов определяется исходя из геометрических соображений как угол треугольника, сформированного восстановленными на фоне шума значениями амплитуд трех упомянутых сигналов. Тем самым предлагаемый метод измерения фазового сдвига с использованием разностного сигнала основан исключительно на амплитудных измерениях, что существенно снижает требования к оборудованию и облегчает реализацию метода на практике. В работе представлены как строгое математическое обоснование нового метода измерения разности фаз сигналов, так и результаты его численного тестирования. Разработанный метод высокоточных фазовых измерений может эффективно применяться для решения широкого круга задач в различных областях науки и техники, в частности в дальнометрии, в системах коммуникации, навигации и т. п.
-
Аналитическое решение и компьютерное моделирование задачи расчета параметров распределения Райса в предельных случаях большого и малого отношения сигнала к шуму
Компьютерные исследования и моделирование, 2015, т. 7, № 2, с. 227-242Просмотров за год: 2.В работе решается задача вычисления параметров случайного сигнала в условиях распределения Райса на основе принципа максимума правдоподобия в предельных случаях большого и малого значения отношения сигнала к шуму. Получены аналитические формулы для решения системы уравнений максимума правдоподобия для искомых параметров сигнала и шума как для однопараметрического приближения, когда рассчитывается только один параметр задачи — величина сигнала, в предположении априорной известности второго параметра — дисперсии шума, так и для двухпараметрической задачи, когда оба параметра априорно неизвестны. Непосредственное вычисление искомых параметров сигнала и шума по формулам позволяет избежать необходимости ресурсоемкого численного решения системы нелинейных уравнений и тем самым оптимизировать время компьютерной обработки сигналов и изображений. Представлены результаты компьютерного моделирования задачи, подтверждающие теоретические выводы. Задача является значимой для целей обработки райсовских данных, в частности, в системах магнитно-резонансной визуализации.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"