Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'система дифференциальных уравнений':
Найдено статей: 103
  1. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1099-1101
  2. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1415-1418
  3. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 5-10
  4. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 245-248
  5. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 581-584
  6. Корчак А.Б., Евдокимов А.В.
    Система интеграции гетерогенных моделей и ее применение к расчету слабосвязанных систем дифференциальных уравнений
    Компьютерные исследования и моделирование, 2009, т. 1, № 2, с. 127-136

    Разрабатывается программная система интеграции динамических моделей, неоднородных по своим математическим свойствам и/или по требованиям к шагу по времени. Предлагается семейство алгоритмов параллельного расчета гетерогенных моделей с разными шагами по времени. Применительно к слабосвязанным системам обыкновенных дифференциальных уравнений исследуется погрешность таких алгоритмов и их преимущество в затратах времени по сравнению с точными методами решения.

    Просмотров за год: 1.
  7. Зубанов А.М., Кутрухин Н.Н., Ширков П.Д.
    О построении линейно неявных схем, LN-эквивалентных неявным методам Рунге–Кутты
    Компьютерные исследования и моделирование, 2012, т. 4, № 3, с. 483-496

    В работе предложен новый класс безитерационных схем (явно-неявных), который позволяет получать методы, повторяющие на линейных неавтономных задачах свойства лучших неявных жестко-точных методов Рунге–Кутты [Хайрер, Ваннер,1999] – RadauIIA и LobattoIIIC. Для этого используется понятие LN-эквивалентности методов [Ширков, 2012]. С использованием среды аналитических вычислений получены уравнения порядка и затухания таких методов и найдены коэффициенты некоторых схем до 3-го порядка включительно. Проводится численное исследование новых методов на классических тестах, применяемых для проверки схем, разрабатываемых для жестких систем.

    Просмотров за год: 2. Цитирований: 2 (РИНЦ).
  8. Данная работа посвящена разработке алгоритма численного интегрирования системы дифференциальных уравнений потенциально-потокового метода моделирования неравновесных процессов. Этот метод был разработан автором в опубликованных им ранее работах. В настоящей работе рассмотрение ограничивается системами с сосредоточенными параметрами. Также ранее была разработана автором методика анализа корректности приближенного решения системы потенциально-потоковых уравнений для систем в сосредоточенных параметрах. Целью настоящей статьи является объединение этой методики с современными численными методами интегрирования систем обыкновенных дифференциальных уравнений и разработка методики численного интегрирования систем уравнений потенциально-потокового метода, позволяющей гарантировать корректность приближенного решения.

    Просмотров за год: 4. Цитирований: 3 (РИНЦ).
  9. В приближении однородной намагниченности построена математическая модель ячейки памяти MRAM c осью анизотропии, расположенной в плоскости запоминающего ферромагнитного слоя ячейки и ориентированной параллельно ее краю (продольная анизотропия). Модель базируется на уравнении Ландау–Лифшица–Гильберта с токовым членом в форме Слончевского–Берже. Выведена система обыкновенных дифференциальных уравнений в нормальном виде, описывающая динамику намагниченности в трехслойной вентильной структуре Co/Cu/Co в зависимости от величины тока инжекции и внешнего магнитного поля, параллельного оси анизотропии магнитных слоев. Показано, что при любых токах и полях система имеет два основных состояния равновесия, расположенных на оси, совпадающей с осью анизотропии. Проведен анализ устойчивости этих состояний равновесия. Выписаны уравнения для определения дополнительных состояний равновесия. Показано, что в зависимости от величины внешнего магнитного поля и тока инжекции система может иметь всего два, четыре и шесть симметричных относительно оси анизотропии положений равновесия. Построены бифуркационные диаграммы, характеризующие основные типы динамики вектора намагниченности свободного слоя. Проведена классификация фазовых портретов на единичной сфере в зависимости от управляющих параметров (тока и поля). Изучены особенности динамики вектора намагниченности в каждой из характерных областей бифуркационной диаграммы и численно построены траектории переключения. Для построения траекторий использовался метод Рунге–Кутты. Найдены параметры, при которых существуют неустойчивые и устойчивые предельные циклы. Установлено, что неустойчивые предельные циклы существуют вокруг основного устойчивого равновесия на оси, совпадающей с осью анизотропии, а устойчивые циклы — вокруг неустойчивых дополнительных равновесий. Граница области существования устойчивых предельных циклов рассчитана численно. Обнаружены новые типы динамики под влиянием внешнего магнитного поля и спин-поляризованного тока инжекции: случайное и неполное переключение намагниченности. Аналитически определены значения пороговых токов переключения в зависимости от внешнего магнитного поля. Численно выполнены оценки времени переключения в зависимости от величин управляющих параметров.

    Просмотров за год: 2. Цитирований: 6 (РИНЦ).
  10. Фомин А.А., Фомина Л.Н.
    О сходимости неявного итерационного полинейного рекуррентного метода решения систем разностных эллиптических уравнений
    Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 857-880

    Работа посвящена теоретическому обоснованию неявного итерационного полинейного рекуррентного метода решения систем разностных уравнений, которые возникают при аппроксимации двумерных эллиптических дифференциальных уравнений на регулярной сетке. Высокая эффективность этого метода практически подтверждена при решении сложных тестовых задач, а также задач течения и теплообмена вязкой несжимаемой жидкости. Однако теоретические положения, объясняющие высокую скорость сходимости и устойчивость метода, до сих пор оставались за кадром внимания, что и послужило причиной проведения настоящего исследования. В работе подробно излагается процедура эквивалентных и приближенных преобразований исходной системы линейных алгебраических уравнений (СЛАУ) как в матрично-векторной форме, так и виде расчетных формул метода. При этом для наглядности изложения материала ключевые моменты преобразований иллюстрируются схемами изменения разностных шаблонов, отвечающих преобразованным уравнениям. Конечная цель процедуры преобразований — получение канонической формы записи метода, из которого следует его корректность в случае сходимости решения. На основе анализа структур и элементных составов матричных операторов проводится оценка их норм и, соответственно, доказывается сходимость метода для произвольных начальных векторов.

    В специальном случае слабых ограничений на искомое решение производится оценка нормы оператора перехода. Показывается, что с ростом размерности матрицы этого оператора величина его нормы уменьшается пропорционально квадрату (или кубу, в зависимости от версии метода) шага сеточного разбиения области решения задачи. С помощью простых оценок получено необходимое условие устойчивости метода. Также даются рекомендации относительно выбора по порядку величины оптимального итерационного параметра компенсации. Теоретические выводы проиллюстрированы результатами решения тестовых задач. Показано, что при увеличении размерности сеточного разбиения области решения количество итераций, необходимых для достижения заданной точности решения, при прочих равных условиях уменьшается. Также продемонстрировано, что если слабые ограничения на решение нарушены при выборе его начального приближения, то в полном соответствии с полученными теоретическими результатами скорость сходимости метода существенно уменьшается.

    Просмотров за год: 15. Цитирований: 1 (РИНЦ).
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.