Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'семантические связи':
Найдено статей: 4
  1. От редакции
    Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 201-203
    Просмотров за год: 29.
  2. От редакции
    Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 363-365
    Просмотров за год: 20.
  3. Мусаев А.А., Григорьев Д.А.
    Обзор современных технологий извлечения знаний из текстовых сообщений
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1291-1315

    Решение общей проблемы информационного взрыва связано с системами автоматической обработки цифровых данных, включая их распознавание, сортировку, содержательную обработку и представление в виде, приемлемом для восприятия человеком. Естественным решением является создание интеллектуальных систем извлечения знаний из неструктурированной информации. При этом явные успехи в области обработки структурированных данных контрастируют со скромными достижениями в области анализа неструктурированной информации, в частности в задачах обработки текстовых документов. В настоящее время данное направление находится в стадии интенсивных исследований и разработок. Данная работа представляет собой системный обзор международных и отечественных публикаций, посвященных ведущему тренду в области автоматической обработки потоков текстовой информации, а именно интеллектуальному анализу текстов или Text Mining (TM). Рассмотрены основные задачи и понятия TM, его место в области проблемы искусственного интеллекта, а также указаны сложности при обработке текстов на естественном языке (NLP), обусловленные слабой структурированностью и неоднозначностью лингвистической ин- формации. Описаны стадии предварительной обработки текстов, их очистка и селекция признаков, которые, наряду с результатами морфологического, синтаксического и семантического анализа, являются компонентами TM. Процесс интеллектуального анализа текстов представлен как отображение множества текстовых документов в «знания», т.е. в очищенную от избыточности и шума совокупность сведений, необходимых для решения конкретной прикладной задачи. На примере задачи трейдинга продемонстрирована формализация принятия торгового решения, основанная на совокупности аналитических рекомендаций. Типичными примерами TM являются задачи и технологии информационного поиска (IR), суммаризации текста, анализа тональности, классификации и кластеризации документов и т. п. Общим вопросом для всех методов TM является выбор типа словоформ и их производных, используемых для распознавания контента в последовательностях символов NL. На примере IR рассмотрены типовые алгоритмы поиска, основанные на простых словоформах, фразах, шаблонах и концептах, а также более сложные технологии, связанные с дополнением шаблонов синтаксической и семантической информацией. В общем виде дано описание механизмов NLP: морфологический, синтаксический, семантический и прагматический анализ. Приведен сравнительный анализ современных инструментов TM, позволяющий осуществить выбор платформы, исходя из особенности решаемой задачи и практических навыков пользователя.

  4. Добрынин В.Н., Филозова И.А.
    Технология формирования каталога информационного фонда
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 661-673

    В статье рассматривается подход совершенствования технологий обработки информации на основе логико-семантической сети (ЛСС) «Вопрос–ответ–реакция», направленный на формирование и поддержку каталожной службы, обеспечивающей эффективный поиск ответов на вопросы [Большой энциклопедический словарь, 1998; Касавин, 2009]. В основу такой каталожной службы положены семантические связи, отражающие логику изложения авторской мысли в рамках данной публикации, темы, предметной области. Структурирование и поддержка этих связей позволят работать с полем смыслов, обеспечив новые возможности для исследования корпуса документов электронных библиотек (ЭБ) [Касавин, 2009]. Формирование каталога информационного фонда (ИФ) включает: формирование лексического словаря ИФ; построение дерева классификации ИФ по нескольким основаниям; классификация ИФ по вопросно-ответным темам; формирование поисковых запросов, адекватных дереву классификации вопросно-ответных тем (таблица соответствия «запрос → ответ ↔ {вопрос–ответ–реакция}»); автоматизированный поиск запросов по тематическим поисковым машинам; анализ ответов на запросы; поддержка каталога ЛСС на этапе эксплуатации (пополнение и уточнение каталога). Технология рассматривается для двух ситуаций: 1) ИФ уже сформирован; 2) ИФ отсутствует, его необходимо создать.

    Просмотров за год: 3.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.