Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Определение автора текста методом сегментации
Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1199-1210В работе описывается метод распознавания авторов литературных текстов по близости фрагментов, на которые разделен отдельный текст, к эталону автора. Эталоном является эмпирическое распределение частот буквосочетаний, построенное по обучающей выборке, куда вошли экспертно отобранные достоверно известные произведения данного автора. Совокупность эталонов разных авторов образует библиотеку, внутри которой и решается задача об идентификации автора неизвестного текста. Близость между текстами понимается в смысле нормы в L1 для вектора частот буквосочетаний, который строится для каждого фрагмента и для текста в целом. Автором неизвестного текста назначается тот, эталон которого чаще всего выбирается в качестве ближайшего для набора фрагментов, на которые разделен текст. Длина фрагмента оптимизируется исходя из принципа максимального различия расстояний от фрагментов до эталонов в задаче распознавания «свой–чужой». Тестирование метода проведено на корпусе отечественных и зарубежных (в переводе) авторов. Были собраны 1783 текста 100 авторов суммарным объемом примерно 700 млн знаков. Чтобы исключить тенденциозность отбора авторов, рассматривались авторы, фамилии которых начинались на одну и ту же букву (в данном случае Л). Ошибка идентификации по биграммам составила 12%. Наряду с достаточно высокой точностью данный метод обладает еще одним важным свойством: он позволяет оценить вероятность того, что эталон автора рассматриваемого текста в библиотеке отсутствует. Эта вероятность может быть оценена по результатам статистики ближайших эталонов для малых фрагментов текста. В работе исследуются также статистические цифровые портреты писателей: это совместные эмпирические распределения вероятности того, что некоторая доля текста идентифицируется на заданном уровне доверия. Практическая важность этих статистик в том, что носители соответствующих распределений практически не пересекаются для своих и чужих эталонов, что позволяет распознать эталонное распределение буквосочетаний на высоком уровне доверия.
Ключевые слова: эмпирическое распределение частот, биграммы, идентификация автора, литературный текст, ближайший эталон. -
Персонализация математических моделей в кардиологии: трудности и перспективы
Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 911-930Большинство биомеханических задач, представляющих интерес для клиницистов, могут быть решены только с помощью персонализированных математических моделей. Такие модели позволяют формализовать и взаимоувязать ключевые патофизиологические процессы, на основе клинически доступных данных оценить неизмеряемые параметры, важные для диагностики заболеваний, спрогнозировать результат терапевтического или хирургического вмешательства. Использование моделей в клинической практике накладывает дополнительные ограничения: практикующие врачи требуют валидации модели на клинических случаях, быстроту и автоматизированность всей расчетной технологической цепочки от обработки входных данных до получения результата. Ограничения на время расчета, определяемые временем принятия врачебного решения (порядка нескольких минут), приводят к необходимости использования методов редукции, корректно описывающих исследуемые процессы в рамках численных моделей пониженной размерности или в рамках методов машинного обучения.
Персонализация моделей требует пациентоориентированной оценки параметров модели и создания персонализированной геометрии расчетной области и построения расчетной сетки. Параметры модели оцениваются прямыми измерениями, либо методами решения обратных задач, либо методами машинного обучения. Требование персонализации моделей накладывает серьезные ограничения на количество настраиваемых параметров модели, которые могут быть измерены в стандартных клинических условиях. Помимо параметров, модели включают краевые условия, которые также должны учитывать особенности пациента. Методы задания персонализированных краевых условий существенно зависят от решаемой клинической задачи, зоны ее интереса и доступных клинических данных. Построение персонализированной области посредством сегментации медицинских изображений и построение расчетной сетки, как правило, занимают значительную долю времени при разработке персонализированной вычислительной модели, так как часто выполняются в ручном или полуавтоматическом режиме. Разработка автоматизированных методов постановки персонализированных краевых условий и сегментации медицинских изображений с последующим построением расчетной сетки является залогом широкого использования математического моделирования в клинической практике.
Цель настоящей работы — обзор и анализ наших решений по персонализации математических моделей в рамках трех задач клинической кардиологии: виртуальной оценки гемодинамической значимости стенозов коронарных артерий, оценки изменений системного кровотока после гемодинамической коррекции сложных пороков сердца, расчета характеристик коаптации реконструированного аортального клапана.
Ключевые слова: вычислительная биомеханика, персонализированная модель.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"