Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'регрессионный анализ':
Найдено статей: 21
  1. От редакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 139-142
    Просмотров за год: 2.
  2. От редакции
    Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 733-735
    Просмотров за год: 20.
  3. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 689-692
  4. От редакции
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 5-8
  5. От редакции
    Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 455-457
  6. От редакции
    Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 669-671
  7. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 485-489
  8. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1415-1418
  9. Предложен метод расчета границ качественных классов для количественных характеристик систем любой природы. Метод позволяет установить: связи, не поддающиеся обнаружению при помощи корреляционного и регрессионного анализа; границы для качественных классов индикатора состояния систем и факторов, влияющих на это состояние; вклад факторов в степень «неприемлемости» значений индикатора; достаточность программы наблюдений за
    факторами для описания причин «неприемлемости» значений индикатора.

    Просмотров за год: 1. Цитирований: 6 (РИНЦ).
  10. Юдин Н.Е.
    Модифицированный метод Гаусса–Ньютона для решения гладкой системы нелинейных уравнений
    Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 697-723

    В работе предлагается новая версия метода Гаусса–Ньютона для решения системы нелинейных уравнений, основанная на идеях использования верхней оценки нормы невязки системы уравнений и квадратичной регуляризации. Предложенная версия метода Гаусса–Ньютона на практике фактически задает целое параметризованное семейство методов решения систем нелинейных уравнений и задач восстановления регрессионной зависимости. Разработанное семейство методов Гаусса–Ньютона состоит целиком из итеративных методов, включающих в себя также специальные формы алгоритмов Левенберга–Марквардта, с обобщением на случаи применения в неевклидовых нормированных пространствах. В разработанных методах используется локальная модель, осуществляющая параметризованное проксимальное отображение и допускающая на практике применение неточного оракула в формате «черного ящика» с ограничением на точность вычисления и на сложность вычисления. Для разработанного семейства методов приведен анализ эффективности в терминах количества итераций алгоритма, точности и сложности представления локальной модели и вычисления оракула, параметров размерности решаемой задачи с выводом локальной и глобальной сходимости при использовании произвольного оракула. В работе представлены условия глобальной сублинейной сходимости для предложенного семейства методов решения системы нелинейных уравнений, состоящих из гладких по Липшицу функций. В рамках дополнительных естественных предположений о невырожденности системы нелинейных функций установлена локальная суперлинейная сходимость для рассмотренного семейства методов. При выполнении условия Поляка–Лоясиевича для системы нелинейных уравнений доказана локальная и глобальная линейная сходимость рассмотренных методов Гаусса–Ньютона. Помимо теоретического обоснования методов, в работе рассматриваются вопросы их практической реализации. В частности, в проведенных экспериментах для точного оракула приводятся схемы эффективного вычисления в зависимости от параметров размерности решаемой задачи. Предложенное семейство методов объединяет в себе несколько существующих и часто используемых на практике модификаций метода Гаусса–Ньютона, позволяя получить гибкий и удобный в использовании метод, реализуемый на практике с помощью стандартных техник выпуклой оптимизации и вычислительной линейной алгебры.

Страницы: следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.