Текущий выпуск Номер 3, 2024 Том 16

Все выпуски

Результаты поиска по 'разработка конструкции':
Найдено статей: 17
  1. Пугач К.С.
    Доводка поля температур на выходе из малоэмисионной камеры сгорания методами трехмерного моделирования
    Компьютерные исследования и моделирование, 2014, т. 6, № 6, с. 901-909

    Рассмотрены особенности формирования поля температуры уходящих газов на выходе из малоэмиссионных камер сгорания (МЭКС) газотурбинных двигателей (ГТД). Показаны основные проблемы, связанные с их доводкой. Представлены результаты численных исследований влияния степени выгорания топлива по длине МЭКС на температурную неравномерность уходящих газов. Проведена оптимизация конструкции смесителя ввода воздуха на разбавление по количеству, форме и местоположению отверстий. Представлена методика разработки смесителя для камер сгорания подобного типа.

    Просмотров за год: 3. Цитирований: 2 (РИНЦ).
  2. Фадеев И.Д., Аксёнов А.А., Дмитриева И.В., Низамутдинов В.Р., Пахолков В.В., Рогожкин С.А., Сазонова М.Л., Шепелев С.Ф.
    Разработка методического подхода и численное моделирование теплогидравлических процессов в промежуточном теплообменнике реактора БН
    Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 877-894

    В работе представлены результаты трехмерного численного моделирования теплогидравлических процессов в промежуточном теплообменнике перспективного реактора на быстрых нейтронах с натриевым теплоносителем (БН) с учетом разработанного методического подхода.

    Промежуточный теплообменник (ПТО) размещен в корпусе реактора и предназначен для передачи тепла от натрия первого контура, циркулирующего в межтрубном пространстве, натрию второго контура, циркулирующему внутри труб. Перед входными окнами ПТО при интегральной компоновке оборудования первого контура в реакторе БН имеет место температурное расслоение теплоносителя из-за неполного перемешивания разнотемпературных потоков на выходе из активной зоны. Внутри ПТО в районе входных и выходных окон теплообменника также реализуется сложное продольно-поперечное течение теплоносителя, которое приводит к неравномерному распределению расхода теплоносителя в межтрубном пространстве и, как следствие, к неравномерному распределению температуры и эффективности теплообмена по высоте и радиусу трубного пучка.

    С целью подтверждения заложенных в проекте теплогидравлических параметров ПТО перспективного реактора БН был разработан методический подход для трехмерного численного моделирования теплообменника, размещенного в корпусе реактора, учитывающий трехмерную картину течения натрия на входе и внутри ПТО, а также обосновывающий рекомендации для упрощения геометрии расчетной модели ПТО. Численное моделирование теплогидравлических процессов в ПТО перспективного реактора БН проводилось с использованием программного комплекса FlowVision со стандартной $k-\varepsilon$-моделью турбулентности и моделью турбулентного теплопереноса LMS. Для повышения представительности численного моделирования трубного пучка ПТО выполнены верификационные расчеты однотрубного и многотрубного теплообменников «натрий – натрий» с соответствующими конструкции ПТО геометрическими характеристиками. Для определения входных граничных условий в модели ПТО выполнен дополнительный трехмерный расчет с учетом неравномерной картины течения в верхней смесительной камере реактора. Расчетная модель ПТО была оптимизирована за счет упрощения дистанционирующих поясов и выбора секторной модели. В результате численного моделирования ПТО получены распределения скорости натрия первого контура, температуры натрия первого и второго контуров. Удовлетворительное согласование результатов расчета с проектными данными по интегральным параметрам подтвердило принятые проектные теплогидравлические характеристики ПТО перспективного реактора БН.

  3. Диденко Д.В., Балуев Д.Е., Маров И.В., Никаноров О.Л., Рогожкин С.А., Сорокин С.Е.
    Расчетное моделирование теплофизических процессов в высокотемпературном газоохлаждаемом реакторе
    Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 895-906

    В настоящее время в Российской Федерации разрабатывается высокотемпературный газоохлаждаемый реактор, являющийся составной частью атомной энерготехнологической станции, предназначенной для крупномасштабного производства водорода. При разработке проекта высокотемпературного газоохлаждаемого реактора одной из ключевых задач является расчетное обоснование принятой конструкции.

    В статье приводится методика расчетного анализа теплофизических характеристик высокотемпературного газоохлаждаемого реактора. Методика базируется на использовании современных вычислительных программ для электронно-вычислительных машин.

    Выполнение задачи теплофизического расчета реактора в целоми активной зоны в частности проводилось в три этапа. Первый этап заключается в обосновании нейтронно-физических характеристик активной зоны блочного типа в процессе выгорания с использованием программы MCU-HTR, основанной на методе Монте-Карло. Вторым и третьим этапами являются исследования течения теплоносителя и температурного состояния реактора и активной зоны в трехмерной постановке с требуемой степенью детализации с помощью программ FlowVision и ANSYS.

    Для проведения расчетных исследований были разработаны расчетные модели проточной части реактора и колонны тепловыделяющих сборок.

    По результатам расчетного моделирования оптимизированы конструкция опорных колонн и нейтронно-физические параметры тепловыделяющей сборки. Это привело к снижению суммарного гидравлического сопротивления реактора и максимальной температуры топливных элементов.

    Показана зависимость максимальной температуры топлива от величины коэффициентов неравномерности энерговыделения, определяемой расположением поглощающих стержней и компактов выгорающего поглотителя в тепловыделяющей сборке.

  4. Овчаренко Е.А., Клышников К.Ю., Саврасов Г.В., Нуштаев Д.В., Глушкова Т.В.
    Выбор оптимальных геометрических параметров ячейки опорного каркаса транскатетерного протеза клапана аорты
    Компьютерные исследования и моделирование, 2014, т. 6, № 6, с. 943-954

    Настоящая статья представляет анализ зависимостей между основными геометрическими параметрами ячейки опорного каркаса и функциональными характеристиками биопротеза клапана аорты. В работе анализировали модели ячеек закрытого типа с различными значениями ширины, толщины и количеством по окружности с оценкой создаваемых радиальных сил, напряженно-деформированного состояния конструкции, остаточной деформации и сил поперечного сжатия. Результаты исследования могут быть использованы при разработке новых моделей транскатетерных протезов клапана аорты или в ходе анализа уже существующих конструкций.

    Просмотров за год: 1. Цитирований: 1 (РИНЦ).
  5. Аксёнов А.А., Жлуктов С.В., Шмелев В.В., Жестков М.Н., Рогожкин С.А., Пахолков В.В., Шепелев С.Ф.
    Разработка методики расчетного анализа теплогидравлических процессов в реакторе на быстрых нейтронах с применением кода FlowVision
    Компьютерные исследования и моделирование, 2017, т. 9, № 1, с. 87-94

    В статье описан подход к расчетному анализу теплогидравлических процессов в реакторе на быстрых нейтронах (БН), включающий применяемые физические модели, численные схемы и упрощения реальной конструкции, принятые в расчетной модели. Рассмотрены стационарные и динамические режимы испытаний. Стационарные режимы имитировали работу реактора на номинальной мощности. Динамические режимы имитировали расхолаживание реактора через систему отвода тепла. Моделирование теплогидравлических процессов проведено в программном комплексе (ПК) FlowVision. На основе геометрической модели была построена математическая модель, описывающая течение теплоносителя в первом контуре имитатора реактора типа БН.

    Моделирование течения и теплообмена рабочего вещества в имитаторе реактора выполнено в предположении независимости плотности вещества от давления, с использованием $k–\varepsilon$ модели турбулентности, с применением модели дисперсной среды и с учетом сопряженного теплообмена. Реализованная в ПК FlowVision модель дисперсной среды позволила учесть процесс теплообмена между контурами в теплообменниках. Из-за большого количества расчетных ячеек по модели активной зоны области двух теплообменных аппаратов были заменены гидравлическими сопротивлениями и стоками тепла.

    Моделирование течения теплоносителя в ПК FlowVision позволило получить распределения температуры, скорости и давления во всей расчетной области. В результате использования модели дисперсной среды были получены распределения температуры теплоносителей по обоим контурам теплообменников. Определено изменение температуры теплоносителя вдоль двух термозондов, которые располагались в холодной и горячей камерах имитатора реактора БН. На основе сравнительного анализа численных и экспериментальных данных сделаны выводы о корректности построенной математической модели и возможности ее использования для моделирования теплогидравлических процессов, протекающих в реакторах с натриевым теплоносителем типа БН.

    Просмотров за год: 6. Цитирований: 1 (РИНЦ).
  6. Шибков А.А., Кочегаров С.С.
    Компьютерное и физико-химическое моделирование эволюции фрактального коррозионного фронта
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 105-124

    Коррозионные повреждения металлов и сплавов — одна из основных проблем прочности и долговечности металлических конструкций и изделий, эксплуатируемых в условиях контакта с химически агрессивными средами. В последнее время возрастает интерес к компьютерному моделированию эволюции коррозионных повреждений, особенно питтинговой коррозии, для более глубокого понимания коррозионного процесса, его влияния на морфологию, физико-химические свойства поверхности и механическую прочность и долговечность материала. Это обусловлено в основном сложностью аналитических и высокой стоимостью экспериментальных in situ исследований реальных коррозионных процессов. Вместе с тем вычислительные мощности современных компьютеров позволяют с высокой точностью рассчитывать коррозию лишь на относительно небольших участках поверхности. Поэтому разработка новых математических моделей, позволяющих рассчитывать большие области для прогнозирования эволюции коррозионных повреждений металлов, является в настоящее время актуальной проблемой.

    В настоящей работе с помощью разработанной компьютерной модели на основе клеточного автомата исследовали эволюцию коррозионного фронта при взаимодействии поверхности поликристаллического металла с жидкой агрессивной средой. Зеренная структура металла задавалась с помощью многоугольников Вороного, используемых для моделирования поликристаллических сплавов. Коррозионное разрушение осуществлялось при помощи задания вероятностной функции перехода между ячейками клеточного автомата. Принималось во внимание, что коррозионная прочность зерен неодинакова вследствие кристаллографической анизотропии. Показано, что это приводит к формированию шероховатой фазовой границы в ходе коррозионного процесса. Снижение концентрации активных частиц в растворе агрессивной среды в ходе протекающей химической реакции приводит к затуханию коррозии за конечное число итераций расчета. Установлено, что конечная фазовая граница имеет фрактальную структуру с размерностью 1.323 ± 0.002, близкой к размерности фронта градиентной перколяции, что хорошо согласуется с фрактальной размерностью фронта травления поликристаллического алюминий-магниевого сплава АМг6 концентрированным раствором соляной кислоты. Показано, что коррозия поликристаллического металла в жидкой агрессивной среде представляет новый пример топохимического процесса, кинетика которого описывается теорией Колмогорова–Джонсона–Мейла–Аврами.

  7. Шардыко И.В., Копылов В.М., Волняков К.А.
    Разработка конструкции, моделирование и управление шарниром с переменной упругостью на основе магнитной пружины кручения
    Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1323-1347

    С появлением промышленных роботов робототехника приобретает значение во всемирном масштабе как в экономике, так и в науке. Однако, их возможности сильно ограничены, особенно в части выполнения контактных задач, в которых есть необходимость регулирования или по крайней мере ограничения усилия в контакте. В определенный момент было замечено, что упругость в механической цепи шарнира, считавшаяся ранее негативным фактором, в этомо тношении напротив является полезной. Данное наблюдение привело к появлению роботов с упругими шарнирами, пригодных к выполнению контактных задач и кооперативной деятельности в частности, в результате чего их распространение сегодня становится всё шире. Многие исследователи стремились реализовать подобные устройства не только в виде простейших последовательных упругих приводов, но и посредствомбо лее сложных шарниров с переменной упругостью (ШПУ), способных изменять собственную механическую жесткость. Все упругие шарниры обеспечивают в определенной мере устойчивость к ударным нагрузкам и безопасность взаимодействия с объектами внешней среды, однако изменение жесткости позволяет получить дополнительные преимущества, такие как энерго-эффективность и адаптируемость к задачам.

    В настоящей статье представлена новая реализация ШПУ, с магнитной муфтой в качестве упругого элемента. Магнитная передача является бесконтактной, и потому обладает преимуществом с точки зрения снижения чувствительности к смещению и рассогласованию осей. Описание модели трения также упрощается. Кроме того, данная муфта обладает характеристикой жесткости, которая не только не возрастает резко с повышением нагрузки, но становится более плавной, и даже снижается после точки максимума. Вследствие этого, при достижении максимального момента, муфта проскальзывает, после чего положение равновесия уже определяется новой парой полюсов. В итоге данное решение снижает риск механического повреждения. В статье подробно рассмотрен процесс разработки шарнира, представлена его математическая модель. Также предложена реализация системы управления шарниром и проведено компьютерное моделирование, подтверждающее принятые в разработке решения.

Страницы: предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.