Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Моделирование достижения консенсуса в условиях доминирования в социальной группе
Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 1067-1078Во многих социальных группах, например в технических комитетах по стандартизации, на между- народном, региональном и национальных уровнях, в европейских общинах, управляющих экопоселени- ями, социальных общественных движениях (occupy), международных организациях, принятие решений опирается на консенсус членов группы. Вместо голосования, когда большинство получает победу над меньшинством, консенсус позволяет найти решение, которое каждый член группы поддерживает или как минимум считает приемлемым. Такой подход гарантирует, что будут учтены все мнения членов группы, их идеи и потребности. При этом отмечается, что достижение консенсуса требует значительного време- ни, поскольку необходимо обеспечить согласие внутри группы независимо от ее размера. Было показано, что в некоторых ситуациях число итераций (согласований, переговоров) весьма значительно. Более того, в процессе принятия решений всегда присутствует риск блокировки решения меньшинством в группе, что не просто затягивает время принятия решения, а делает его невозможным. Как правило, таким мень- шинством выступает один или два одиозных человека в группе. При этом в дискуссии такой член группы старается доминировать, оставаясь всегда при своем мнении, игнорируя позицию других коллег. Это при- водит к затягиванию процесса принятия решений, с одной стороны, и ухудшению качества консенсуса — с другой, поскольку приходится учитывать только мнение доминирующего члена группы. Для выхода из кризиса в этой ситуации было предложено принимать решение по принципу «консенсус минус один» или «консенсус минус два», то есть не учитывать мнение одного или двух одиозных членов группы.
В статье на основе моделирования консенсуса с использованием модели регулярных марковских цепей исследуется вопрос, насколько сокращается время принятия решения по правилу «консенсус минус один», когда не учитывается позиция доминирующего члена группы.
Общий вывод, который вытекает из результатов моделирования, сводится к тому, что эмпирическое правило принятия решений по принципу «консенсус минус один» имеет соответствующее математиче- ское обоснование. Результаты моделирования показали, что применение правила «консенсус минус один» позволяет сократить время достижения консенсуса в группе на 76–95 %, что важно для практики.
Среднее число согласований гиперболически зависит от средней авторитарности членов группы (без учета авторитарного), что означает возможность затягивания процесса согласования при высоких значениях авторитарности членов группы.
-
Прогностические модели эффективности и медицинского значения вакцинации противоротавирусной вакциной в Украине
Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 407-421Представлены результаты расчетно-теоретических исследований, связанных с оценкой эффективности и медицинского значения вакцинации противоротавирусной вакциной в Украине. Искомые показатели – генотип-специфическая эффективность вакцины, число предотвращенных острых случаев заболевания, госпитализаций, амбулаторных визитов и смертей – получены применением математического моделирования и реализацией полученной модели на компьютере в виде дерева принятия решений на основе марковской модели. Результаты моделирования показали значительный положительный эффект вакцинации по сравнению с невакцинацией при учете достаточного охвата вакциной населения Украины.
Ключевые слова: ротавирусная инфекция, противоротавирусная вакцина, вакцинация, дерево принятия решений, марковская модель.Просмотров за год: 2. -
Моральный выбор: математическая модель
Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1323-1335В работе приведены результаты исследований по созданию математической модели морального выбора, основанной на развитии подхода, предложенного В.А. Лефевром. В отличие от В.А. Лефевра, который рассматривал весьма умозрительную ситуацию морального выбора субъекта между абстрактными добром и злом под давлением на него внешнего мира с учетом субъективного восприятия субъектом этого давления, в нашем исследовании рассмотрена более приземленная и практически значимая ситуация. Рассматривается случай, когда субъект при принятии решений ориентируется на свое индивидуальное восприятие внешнего мира (которое может быть искаженным, например, вследствие внешнего целенаправленного информационного воздействия на субъекта и манипулирования его сознанием), а добро и зло не абстрактны, а обусловлены системой ценностей, принятой в конкретном рассматриваемом обществе и привязанной к конкретной идеологии/религии, которые могут быть различными для разных обществ.
В результате проведенных исследований разработана базовая математическая модель, рассмотрены частные случаи ее применения. Выявлены некоторые закономерности, связанные с моральным выбором, приведено их формальное описание. В частности, на языке модели рассмотрена ситуация манипулирования сознанием, сформулирован закон снижения моральности общества, состоящего из так называемых свободных субъектов (то есть таких, которые стремятся действовать в соответствии со своими интенциями и соответствовать в своих действиях образу своего «я»).
Ключевые слова: моральный выбор, математическая модель, интенция, функция готовности, система ценностей, свободный субъект. -
Исследование динамики структуры олигополистических рынков при нерыночных противодействиях сторон
Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 219-233В статье исследуется влияние нерыночных действий участников олигополистических рынков на рыночную структуру. Анализируются следующие действия одного из участников рынка, направленные на повышение его рыночной доли: 1) манипуляция ценами; 2) блокировка инвестиций более сильных олигополистов; 3) уничтожение производственной продукции и мощностей конкурентов. Для моделирования стратегий олигополистов используются линейные динамические игры с квадратичным критерием. Целесообразность их использования обусловлена возможностью как адекватного описания эволюции рынков, так и реализации двух взаимно дополняющих подходов к определению стратегий олигополистов: 1) подхода, основанного на представлении моделей в пространстве состояний и решении обобщенных уравнений Риккати; 2) подхода, основанного на применении методов операционного исчисления (в частотной области) и обладающего необходимой для экономического анализа наглядностью.
В статье показывается эквивалентность подходов к решению задачи с максиминными критериями олигополистов в пространстве состояний и в частотной области. Рассматриваются результаты расчетов применительно к дуополии, с показателями, близкими к одной из дуополий в микроэлектронной промышленности мира. Второй дуополист является менее эффективным с позиций затрат, хотя и менее инерционным. Его цель состоит в повышении своей рыночной доли путем реализации перечисленных выше нерыночных методов.
На основе расчетов по игровой модели построены зависимости, характеризующие связь относи- тельного увеличения объемов производства за 25-летний период слабого $dy_2$ и сильного $dy_1$ дуополистов при манипуляции ценами. Показано, что увеличение цены при принятой линейной функции спроса приводит к весьма незначительному росту производства сильного дуополиста, но вместе с тем — к существенному росту этого показателя у слабого.
В то же время блокировка инвестиций, а также уничтожение продукции сильного дуополиста приводят к росту объемов производства товарной продукции у слабого дуополиста за счет снижения этого показателя у сильного, причем эластичность $\frac{y_2}{dy_1}$ превышает по модулю 1.
Ключевые слова: кибератаки, рыночная структура, нерыночные противодействия, олигополистические рынки, динамические игры. -
Персонализация математических моделей в кардиологии: трудности и перспективы
Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 911-930Большинство биомеханических задач, представляющих интерес для клиницистов, могут быть решены только с помощью персонализированных математических моделей. Такие модели позволяют формализовать и взаимоувязать ключевые патофизиологические процессы, на основе клинически доступных данных оценить неизмеряемые параметры, важные для диагностики заболеваний, спрогнозировать результат терапевтического или хирургического вмешательства. Использование моделей в клинической практике накладывает дополнительные ограничения: практикующие врачи требуют валидации модели на клинических случаях, быстроту и автоматизированность всей расчетной технологической цепочки от обработки входных данных до получения результата. Ограничения на время расчета, определяемые временем принятия врачебного решения (порядка нескольких минут), приводят к необходимости использования методов редукции, корректно описывающих исследуемые процессы в рамках численных моделей пониженной размерности или в рамках методов машинного обучения.
Персонализация моделей требует пациентоориентированной оценки параметров модели и создания персонализированной геометрии расчетной области и построения расчетной сетки. Параметры модели оцениваются прямыми измерениями, либо методами решения обратных задач, либо методами машинного обучения. Требование персонализации моделей накладывает серьезные ограничения на количество настраиваемых параметров модели, которые могут быть измерены в стандартных клинических условиях. Помимо параметров, модели включают краевые условия, которые также должны учитывать особенности пациента. Методы задания персонализированных краевых условий существенно зависят от решаемой клинической задачи, зоны ее интереса и доступных клинических данных. Построение персонализированной области посредством сегментации медицинских изображений и построение расчетной сетки, как правило, занимают значительную долю времени при разработке персонализированной вычислительной модели, так как часто выполняются в ручном или полуавтоматическом режиме. Разработка автоматизированных методов постановки персонализированных краевых условий и сегментации медицинских изображений с последующим построением расчетной сетки является залогом широкого использования математического моделирования в клинической практике.
Цель настоящей работы — обзор и анализ наших решений по персонализации математических моделей в рамках трех задач клинической кардиологии: виртуальной оценки гемодинамической значимости стенозов коронарных артерий, оценки изменений системного кровотока после гемодинамической коррекции сложных пороков сердца, расчета характеристик коаптации реконструированного аортального клапана.
Ключевые слова: вычислительная биомеханика, персонализированная модель. -
Интерактивный инструментарий для распределенных телемедицинских систем
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 521-527Просмотров за год: 3. Цитирований: 4 (РИНЦ).Для жителей удалённых районов часто может составлять проблему прохождение квалифицированного медицинского обследования. Доступный медицинский персонал может отсутствовать или не обладать экспертными знаниями достаточного уровня. Помочь в такой ситуации могут телемедицинские технологии. С одной стороны, такие технологии позволяют врачам высокой квалификации оказывать удалённые консультации, повышая тем самым качество постановки диагноза и составления плана лечения. С другой стороны, средства автоматизированного анализа результатов проведённых исследований, анамнеза и информации об аналогичных случаях помогают облегчить выполнение рутинных действий и оказать медицинскому персоналу поддержу в принятии решений.
Создание телемедицинской системы для конкретной предметной области — это трудоёмкий процесс. Не достаточно подобать подходящих специалистов и заполнить базу знаний аналитического модуля. Необходимо также организовать всю инфраструктуру системы, удовлетворяя предъявляемые требования по надёжности, отказоустойчивости, защите персональных данных и так далее. Снизить трудоёмкость разработки телемедицинских комплексов может инструментарий, содержащий многократно используемые инфраструктурные элементы, общие для систем такого рода.
В данной работе описан интерактивный инструментарий для создания распределённых телемедицинских систем. Приводится список требований, предъявляемый к получаемым системам, и архитектурные решения, позволяющие удовлетворить эти требования. В качестве примера применения созданного инструментария описывается кардиологическая телемедицинская система.
-
Теоретическое моделирование достижения консенсуса в условиях коалиций на основе регулярных марковских цепей
Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1247-1256Часто решения в социальных группах принимается на основе консенсуса. Это касается, например, проведения экспертизы в техническом комитете по стандартизации (ТК) перед утверждением национального стандарта Росстандартом. Стандарт утверждается в том и только том случае, если обеспечен консенсус в ТК. Такой же подход к разработке стандартов принят практически во всех странах мира, а также на региональном и международном уровне. Ранее опубликованные работы авторов посвящены построению математической модели времени достижения консенсуса в технических комитетах по стандартизации в условиях варьирования числа членов ТК и уровня их авторитарности. Настоящее исследование является продолжением этих работ для случая образования коалиций в работе социальных групп, в том числе технических комитетов по стандартизации. В рамках модели показано, что при наличии коалиций консенсус не достижим. Однако коалиции, как правило, преодолеваются в ходе переговорного процесса, в против- ном случае число принятых стандартов было бы исключительно мало. В работе проанализированы факторы, которые оказывают влияние на преодоление коалиций: величина уступки и индекс влияния коалиции. На основе статистического моделирования регулярных марковских цепей исследуется их воздействие на время обеспечения консенсуса. Доказано, что время достижения консенсуса значимо зависит от величины односторонней уступки коалиции и слабо зависит от размеров коалиций. Построена регрессионная модель зависимости среднего числа согласований от величины уступки. Выявлено, что даже небольшая уступка влечет наступление консенсуса, увеличение размера уступки приводит (при прочих равных факторах) к резкому снижению времени до наступления консенсуса. Показано, что уступка бо́льшей коалиции в отношении малочисленной коалиции не требует в среднем бо́льшего времени до наступления консенсуса. Уступка авторитарного лидера в группе позволяет сократить число согласований и повысить качество консенсуса. Полученные результаты имеют практическую ценность для всех организационных структур, где возникновение коалиций влечет невозможность принятия решений в рамках достижения консенсуса и требует рассмотрения различных способов для выхода на консенсусное решение.
Ключевые слова: социальная группа, консенсус, стандарты, регулярные марковские цепи, время достижения консенсуса, коалиции. -
Ранговый анализ уголовных кодексов Российской Федерации, Федеративной Республики Германия и Китайской Народной Республики
Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 969-981При принятии решения в различных областях человеческой деятельности часто требуется создавать текстовые документы. Традиционно изучением текстов занимается лингвистика, которая в широком смысле может пониматься как часть семиотики — науки о знаках и знаковых системах, при этом семиотические объекты бывают разных типов. Для количественного исследования знаковых систем широко используется метод ранговых распределений. Ранговое распределение — упорядоченная в порядке убывания по частоте появления совокупность наименований элементов. Для частотно-ранговых распределений исследователи часто используют название рower-law distributions.
В данной работе метод ранговых распределений применяется для анализа Уголовного кодекса различных стран. Общая идея подхода при решении этой задачи состоит в рассмотрении кодекса как текстового документа, в котором знаком является мера наказания за отдельные преступления. Документ представляется как список вхождений некоторого слова (знака), а также всех его производных (словоформ). Совокупность всех этих знаков образует словарь наказаний, для которого выполняется подсчет частоты встречаемости каждой меры наказания в тексте кодекса. Это позволяет преобразовать построенный словарь в частотный словарь наказаний, для дальнейшего исследования которого используются подход В. П. Маслова, предложенный им к анализу задач лингвистики. Этот подход состоит в введении понятия виртуальной частоты встречаемости преступления, которая является мерой оценки не только реального вреда для общества, но и последствий совершенного преступления в различных сферах жизни человека. На этом пути в работе предлагается параметризация рангового распределения для анализа словаря наказаний Особенной части Уголовного кодекса Российской Федерации, касающейся наказаний за экономические преступления. Рассмотрены различные редакции кодекса и показано, что построенная модель объективно отражает его изменения в лучшую сторону, вносимые законодателями с течением времени. Были исследованы тексты, включающие сходные по составу преступления, аналогичные российскому специальному разделу Особенной части, для Уголовных кодексов, действующих в Федеративной Республике Германия и Китайской Народной Республике. Полученные в статье ранговые распределения для соответствующих частотных словарей кодексов совпадают с полученным В. П. Масловым законом, существенно уточняющим закон Ципфа. Это позволяет сделать вывод как о хорошей организации текста, так и об адекватности выбранного наказания для преступлений.
Ключевые слова: Уголовный кодекс, ранговое распределение, степенное распределение, виртуальная частота, закон Маслова.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"