Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'практическое применение':
Найдено статей: 69
  1. Марченко Л.Н., Косенок Я.А., Гайшун В.Е., Бруттан Ю.В.
    Моделирование реологических характеристик водных суспензий на основе наноразмерных частиц диоксида кремния
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1217-1252

    Реологическое поведение водных суспензий на основе наноразмерных частиц диоксида кремния сильно зависит от динамической вязкости, которая непосредственно влияет на применение наножидкостей. Целью данной работы являются разработка и валидация моделей для прогнозирования динамической вязкости от независимых входных параметров: концентрации диоксида кремния SiO2, кислотности рН, а также скорости сдвига $\gamma$. Проведен анализ влияния состава суспензии на ее динамическую вязкость. Выявлены статистически однородные по составу группы суспензий, в рамках которых возможна взаимозаменяемость составов. Показано, что при малых скоростях сдвига реологические свойства суспензий существенно отличаются от свойств, полученных на более высоких скоростях. Установлены значимые положительные корреляции динамической вязкости суспензии с концентрацией SiO2 и кислотностью рН, отрицательные — со скоростью сдвига $\gamma$. Построены регрессионные модели с регуляризацией зависимости динамической вязкости $\eta$ от концентраций SiO2, NaOH, H3PO4, ПАВ (поверхностно-активное вещество), ЭДА (этилендиамин), скорости сдвига $\gamma$. Для более точного прогнозирования динамической вязкости были обучены модели с применением алгоритмов нейросетевых технологий и машинного обучения (многослойного перцептрона MLP, сети радиальной базисной функции RBF, метода опорных векторов SVM, метода случайного леса RF). Эффективность построенных моделей оценивалась с использованием различных статистических метрик, включая среднюю абсолютную ошибку аппроксимации (MAE), среднюю квадратическую ошибку (MSE), коэффициент детерминации $R^2$, средний процент абсолютного относительного отклонения (AARD%). Модель RF показала себя как лучшая модель на обучающей и тестовой выборках. Определен вклад каждой компоненты в построенную модель, показано, что наибольшее влияние на динамическую вязкость оказывает концентрация SiO2, далее кислотность рН и скорость сдвига $\gamma$. Точность предлагаемых моделей сравнивается с точностью ранее опубликованных в литературе моделей. Результаты подтверждают, что разработанные модели можно рассматривать как практический инструмент для изучения поведения наножидкостей, в которых используются водные суспензии на основе наноразмерных частиц диоксида кремния.

  2. Карпаев А.А., Алиев Р.Р.
    Применение упрощенного неявного метода Эйлера для решения задач электрофизиологии
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 845-864

    Рассматривается упрощенный неявный метод Эйлера как альтернатива явному методу Эйлера, являющемуся наиболее распространенным в области численного решения уравнений, описывающих электрическую активность нервных клеток и кардиоцитов. Многие модели электрофизиологии имеют высокую степень жесткости, так как описывают динамику процессов с существенно разными характерными временами: миллисекундная деполяризации предшествует значительно более медленной гиперполяризации при формировании потенциала действия в электровозбудимых клетках. Оценка степени жесткости в работе проводится по формуле, не требующей вычисления собственных значений матрицы Якоби системы ОДУ. Эффективность численных методов сравнивается на примере типичных представителей из классов детальных и концептуальных моделей возбудимых клеток: модели Ходжкина–Хаксли для нейронов и Алиева–Панфилова для кардиоцитов. Сравнение эффективности численных методов проведено с использованием распространенных в биомедицинских задачах видов норм. Исследовано влияние степени жесткости моделей на величину ускорения при использовании упрощенного неявного метода: выигрыш во времени при высокой степени жесткости зафиксирован только для модели Ходжкина–Хаксли. Обсуждаются целесообразность применения простых методов и методов высоких порядков точности для решения задач электрофизиологии, а также устойчивость методов. Обсуждение позволяет прояснить вопрос о причинах отказа от использования высокоточных методов в пользу простых при проведении практических расчетов. На примере модели Ходжкина–Хаксли c различными степенями жесткости вычислены производные решения высших порядков и обнаружены их значительные максимальные абсолютные значения. Последние входят в формулы констант аппроксимации и, следовательно, нивелируют малость множителя, зависящего от порядка точности. Этот факт не позволяет считать погрешности численного метода малыми. Проведенный на качественном уровне анализ устойчивости явного метода Эйлера позволяет оценить вид функции параметров модели для описания границы области устойчивости. Описание границы области устойчивости, как правило, используется при априорном принятии решения о выборе величины шага численного интегрирования.

  3. Алпатов А.В., Петерс Е.А., Пасечнюк Д.А., Райгородский А.М.
    Стохастическая оптимизация в задаче цифрового предыскажения сигнала
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 399-416

    В данной статье осуществляется сравнение эффективности некоторых современных методов и практик стохастической оптимизации применительно к задаче цифрового предыскажения сигнала (DPD), которое является важной составляющей процесса обработки сигнала на базовых станциях, обеспечивающих беспроводную связь. В частности, рассматривается два круга вопросов о возможностях применения стохастических методов для обучения моделей класса Винера – Гаммерштейна в рамках подхода минимизации эмпирического риска: касательно улучшения глубины и скорости сходимости данного метода оптимизации и относительно близости самой постановки задачи (выбранной модели симуляции) к наблюдаемому в действительности поведению устройства. Так, в первой части этого исследования внимание будет сосредоточено на вопросе о нахождении наиболее эффективного метода оптимизации и дополнительных к нему модификаций. Во второй части предлагается новая квази-онлайн-постановка задачи и, соответственно, среда для тестирования эффективности методов, благодаря которым результаты численного моделирования удается привести в соответствие с поведением реального прототипа устройства DPD. В рамках этой новой постановки далее осуществляется повторное тестирование некоторых избранных практик, более подробно рассмотренных в первой части исследования, и также обнаруживаются и подчеркиваются преимущества нового лидирующего метода оптимизации, оказывающегося теперь также наиболее эффективным и в практических тестах. Для конкретной рассмотренной модели максимально достигнутое улучшение глубины сходимости составило 7% в стандартном режиме и 5% в онлайн-постановке (при том что метрика сама по себе имеет логарифмическую шкалу). Также благодаря дополнительным техникам оказывается возможным сократить время обучения модели DPD вдвое, сохранив улучшение глубины сходимости на 3% и 6% для стандартного и онлайн-режимов соответственно. Все сравнения производятся с методом оптимизации Adam, который был отмечен как лучший стохастический метод для задачи DPD из рассматриваемых в предшествующей работе [Pasechnyuk et al., 2021], и с методом оптимизации Adamax, который оказывается наиболее эффективным в предлагаемом онлайн-режиме.

  4. Керчев И.А., Марков Н.Г., Мачука К.Р., Токарева О.С.
    Модели сверточных нейронных сетей для классификации поврежденных вредителями хвойных деревьев на изображениях с беспилотных летательных аппаратов
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1271-1294

    В статье рассмотрена задача мультиклассификации хвойных деревьев с различной степенью поражения насекомыми-вредителями на изображениях, полученных с помощью беспилотных летательных аппаратов (БПЛА). Предложены три модификации классической сверточной нейронной сети U-Net для попиксельной классификации изображений пораженных деревьев пихты сибирской Abies sibirica и кедра сибирского Pinus sibirica. Первая модель Мо-U-Net вносит ряд изменений в классическую модель U-Net. Вторая и третья модели, названные MSC-U-Net и MSC-Res-U-Net, представляют собой ансамбли из трех моделей Мо-U-Net с разной глубиной и размерами входных изображений. В модели MSC-Res-U-Net также используются остаточные блоки. Нами созданы два датасета по изображениям с БПЛА пораженных вредителями деревьев Abies sibirica и Pinus Sibirica и обучены предложенные три модели с использованием функций потерь mIoULoss и Focal Loss. Затем исследовалась эффективность каждой обученной модели при классификации поврежденных деревьев Abies sibirica и Pinus sibirica. Результаты показали, что в случае использования функции потерь mIoULoss предложенные модели не пригодны для практического применения в лесной отрасли, поскольку не позволяют получить для отдельных классов деревьев этих пород точность классификации по метрике IoUс, превышающую пороговое значение 0,5. Однако в случае функции потерь Focal Loss модели MSC-Res-U-Net и Mo-U-Net, в отличие от третьей предложенной модели MSC-U-Net, для всех классов деревьев Abies sibirica и Pinus sibirica показывают высокую точность классификации (превышение порогового значения 0,5 по метрикам IoUс и mIoU). Эти результаты позволяют считать, что модели MSC-Res-U-Net и Mo-U-Net являются практически значимыми для специалистов лесной отрасли, поскольку позволяют выявлять хвойные деревья этих пород на ранней стадии их поражения вредителями.

  5. Фиалко Н.С., Ольшевец М.М., Лахно В.Д.
    Численное исследование модели Холстейна в разных термостатах
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 489-502

    На основе гамильтониана Холстейна промоделирована динамика заряда, привнесенного в молекулярную цепочку сайтов, при разной температуре. При расчете температура цепочки задается начальными данными — случайными гауссовыми распределениями скоростей и смещений сайтов. Рассмотрены разные варианты начального распределенияз арядовой плотности. Расчеты показывают, что система на больших расчетных временах переходит к колебаниям около нового равновесного состояния. Для одинаковых начальных скоростей и смещений средняя кинетическая энергия (и, соответственно, температура $T$) цепочки меняется в зависимости от начального распределения зарядовой плотности: убывает при внесении в цепочку полярона или увеличивается, если в начальный момент электронная часть энергии максимальна.

    Проведено сравнение с результатами, полученными ранее в модели с термостатом Ланжевена. В обоих случаях существование полярона определяется тепловой энергией всей цепочки. По результатам моделирования, переход от режима полярона к делокализованному состоянию происходит в одинаковой области значений тепловой энергии цепочки $N$ сайтов ~ $NT$ для обоих вариантов термостата, с дополнительной корректировкой: для гамильтоновой системы температура не соответствует начально заданной, а определяется на больших расчетных временах из средней кинетической энергии цепочки.

    В поляронной области применение разных способов имитации температуры приводит к ряду существенных различий в динамике системы. В области делокализованного состояния заряда, для больших температур, результаты, усредненные по набору траекторий в системе со случайной силой, и результаты, усредненные по времени для гамильтоновой системы, близки, что не противоречит гипотезе эргодичности. С практической точки зрения для больших температур T ≈ 300 K при моделировании переноса заряда в однородных цепочках можно использовать любой вариант задания термостата.

  6. Малков С.Ю., Шпырко О.А., Давыдова О.И.
    Моральный выбор: математическая модель
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1323-1335

    В работе приведены результаты исследований по созданию математической модели морального выбора, основанной на развитии подхода, предложенного В.А. Лефевром. В отличие от В.А. Лефевра, который рассматривал весьма умозрительную ситуацию морального выбора субъекта между абстрактными добром и злом под давлением на него внешнего мира с учетом субъективного восприятия субъектом этого давления, в нашем исследовании рассмотрена более приземленная и практически значимая ситуация. Рассматривается случай, когда субъект при принятии решений ориентируется на свое индивидуальное восприятие внешнего мира (которое может быть искаженным, например, вследствие внешнего целенаправленного информационного воздействия на субъекта и манипулирования его сознанием), а добро и зло не абстрактны, а обусловлены системой ценностей, принятой в конкретном рассматриваемом обществе и привязанной к конкретной идеологии/религии, которые могут быть различными для разных обществ.

    В результате проведенных исследований разработана базовая математическая модель, рассмотрены частные случаи ее применения. Выявлены некоторые закономерности, связанные с моральным выбором, приведено их формальное описание. В частности, на языке модели рассмотрена ситуация манипулирования сознанием, сформулирован закон снижения моральности общества, состоящего из так называемых свободных субъектов (то есть таких, которые стремятся действовать в соответствии со своими интенциями и соответствовать в своих действиях образу своего «я»).

  7. Представлена математическая модель задачи оптимального размещения предприятий по производству топлива из возобновляемых древесных отходов для обеспечения распределенной системы теплоснабжения региона. Оптимизация осуществляется исходя из минимизации совокупных затрат на производство конечного продукта – тепловой энергии на основе древесного топлива. Предложен метод решения задачи с использованием генетического алгоритма. Приведены практические результаты применения модели на примере Удмуртской Республики.

    Просмотров за год: 5. Цитирований: 2 (РИНЦ).
  8. Моисеев Н.А., Назарова Д.И., Семина Н.С., Максимов Д.А.
    Обнаружение точек разворота на финансовых данных с помощью методов глубокого машинного обучения
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 555-575

    Цель настоящего исследования заключается в разработке методологии выявления точек разворота на временных рядах, включая в том числе финансовые данные. Теоретической основой исследования послужили работы, посвященные анализу структурных изменений на финансовых рынках, описанию предложенных алгоритмов обнаружения точек разворота и особенностям построения моделей классического и глубокого машинного обучения для решения данного типа задач. Разработка подобного инструментария представляет интерес для инвесторов и других заинтересованных сторон, предоставляя дополнительные подходы к эффективному анализу финансовых рынков и интерпретации доступных данных.

    Для решения поставленной задачи была обучена нейронная сеть. В ходе исследования было рассмотрено несколько способов формирования тренировочных выборок, которые различаются характером статистических параметров. Для повышения качества обучения и получения более точных результатов была разработана методология формирования признаков, служащих входными данными для нейронной сети. В свою очередь, эти признаки формируются на основе анализа математического ожидания и стандартного отклонения временных рядов на некоторых интервалах. Также исследуется возможностьих комбинации для достижения более стабильных результатов.

    Результаты модельных экспериментов анализируются с целью сравнения эффективности предложенной модели с другими существующими алгоритмами обнаружения точек разворота, получившими широкое применение в решении практических задач. В качестве тренировочных и тестовых данных используется специально созданный датасет, генерация которого осуществляется с использованием собственных методов. Кроме того, обученная на различных признаках модельте стируется на дневных данных индекса S&P 500 в целях проверки ее эффективности в реальном финансовом контексте.

    По мере описания принципов работы модели рассматриваются возможности для дальнейшего ее усовершенствования: модернизации структуры предложенного механизма, генерации тренировочных данных и формирования признаков. Кроме того, перед авторами стоит задача развития существующих концепций определения точек изменения в режиме реального времени.

  9. Ершов Н.М., Попова Н.Н.
    Естественные модели параллельных вычислений
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 781-785

    Курс «Естественные модели параллельных вычислений», читаемый студентам старших курсов факультета ВМК МГУ, посвящен рассмотрению вопросов суперкомпьютерной реализации естественных вычислительных моделей и является, по сути, введением в теорию естественных вычислений (natural computing) относительно нового раздела науки, образовавшегося на стыке математики, информатики и естественных наук (прежде всего биологии). Тематика естественных вычислений включает в себя как классические разделы, например клеточные автоматы, так и относительно новые, появившиеся в последние 10–20 лет, например методы роевого интеллекта. Несмотря на свое биологическое «происхождение», все эти модели находят широчайшее применение в областях, связанных с компьютерной обработкой данных. Исследования в области естественных вычислений также тесно связаны с вопросами и технологиями параллельных вычислений. Изложение теоретического материала курса сопровождается рассмотрением возможных схем распараллеливания вычислений, а в практической части курса предполагается выполнение студентами программной реализации рассматриваемых моделей с использованием технологии MPI и проведение численных экспериментов по исследованию эффективности выбранных схем распараллеливания вычислений.

    Просмотров за год: 17. Цитирований: 2 (РИНЦ).
Страницы: « первая предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.