Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'поиск связи':
Найдено статей: 45
  1. Сокрытие информации в цифровых изображениях является перспективным направлением кибербезопасности. Методы стеганографии обеспечивают незаметную передачу данных по открытому каналу связи втайне от злоумышленника. Эффективность встраивания информации зависит от того, насколько незаметным и робастным является скрытое вложение, а также от емкости встраивания. Однако показатели качества встраивания являются взаимно обратными и улучшение значения одного из них обычно приводит к ухудшению остальных. Баланс между ними может быть достигнут с помощью применения метаэвристической оптимизации. Метаэвристики позволяют находить оптимальные или близкие к ним решения для многих задач, в том числе трудно формализуемых, моделируя разные природные процессы, например эволюцию видов или поведение животных. В этой статье предлагается новый подход к сокрытию данных в гибридном пространственно-частотном домене цифровых изображений на основе метаэвристической оптимизации. В качестве операции встраивания выбрано изменение блока пикселей изображения в соответствии с некоторой матрицей изменений. Матрица изменений выбирается адаптивно для каждого блока с помощью алгоритмов метаэвристической оптимизации. В работе сравнивается эффективность трех метаэвристик, таких как генетический алгоритм (ГА), оптимизация роя частиц (ОРЧ) и дифференциальная эволюция (ДЭ), для поиска лучшей матрицы изменений. Результаты экспериментов показывают, что новый подход обеспечивает высокую незаметность встраивания, высокую емкость и безошибочное извлечение встроенной информации. При этом хранение и передача матриц изменений для каждого блока не требуются для извлечения данных, что уменьшает вероятность обнаружения скрытого вложения злоумышленником. Метаэвристики обеспечили прирост показателей незаметности и емкости по сравнению с предшествующим алгоритмом встраивания данных в коэффициенты дискретного косинусного преобразования по методу QIM [Evsutin, Melman, Meshcheryakov, 2021] соответственно на 26,02% и 30,18% для ГА, на 26,01% и 19,39% для ОРЧ, на 27,30% и 28,73% для ДЭ.

  2. Максимова О.В., Аронов И.З.
    Математическая модель консенсуса в группе лояльных экспертов, построенная на основании регулярных марковских цепей
    Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1381-1393

    Теоретическое исследование консенсуса дает возможность проанализировать различные ситуации, с которыми приходится сталкиваться в реальной жизни социальным группам, принимающим групповые решения, абстрагируясь от конкретных особенностей групп. Актуальным для практики представляется исследование динамики социальной группы, состоящей из лояльных экспертов, которые в процессе поиска консенсуса уступают друг другу. В этом случае возможны психологические ловушки типа ложного консенсуса или группового мышления, которые иногда могут приводить к управленческим решениям с тяжелыми последствиями.

    В статье построена математическая модель консенсуса для группы лояльных экспертов на основе моделирования с использованием регулярных марковских цепей. Анализ модели показал, что с ростом лояльности (уменьшением авторитарности) членов группы время достижения консенсуса экспоненциально растет (увеличивается число согласований), что, видимо, связано с отсутствием у экспертов желания брать ответственность за принимаемое решение. Рост численности группы (при остальных прочих равных условиях) приводит к

    – уменьшению числа согласований до консенсуса в условиях стремления к абсолютной лояльности членов, т. е. каждый дополнительный лояльный член все меньше добавляет группе «силы»;

    – логарифмическому росту числа согласований в условиях роста средней авторитарности членов.

    Показано, что в очень малой группе (два лояльных эксперта) время наступления консенсуса может вырасти более чем в 10 раз по сравнению с группой из пяти и более членов, что вызывает затягивание самого процесса достижения консенсуса. Выявлено, что в случае наличия группы из двух абсолютно лояльных членов консенсус недостижим.

    Сделан обоснованный вывод о том, что консенсус в группе лояльных экспертов является особым (специальным) случаем консенсуса, поскольку зависимость времени достижения консенсуса от авторитарности экспертов и их числа в группе описывается иными формами связи, чем в случае обычной группы экспертов.

  3. Федоров А.А., Сошилов И.В., Логинов В.Н.
    О подходе к разработке и валидации алгоритмов маршрутизации на разрывных сетях
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 983-993

    В данной статье рассматривается проблема централизованного планирования маршрутов передачи данных в сетях, устойчивых к задержкам и разрывам. Исходная проблема расширяется дополнительными требованиями к хранению узлов и процессу связи. Во-первых, предполагается, что связь между узлами графа устанавливается с помощью антенн. Во-вторых, предполагается, что каждый узел имеет хранилище конечной емкости. Существующие работы не рассматривают и не решают задачу с этими ограничениями. Предполагается, что заранее известны информация о сообщениях, подлежащих обработке, информация о конфигурации сети в указанные моменты времени, взятые с определенными периодами, информация о временных задержках для ориентации антенн для передачи данных и ограничения на объем хранения данных на каждом спутнике группировки. Два хорошо известных алгоритма — CGR и Earliest Delivery with All Queues — модифицированы для удовлетворения расширенных требований. Полученные алгоритмы решают задачу поиска оптимального маршрута в сети, устойчивой к разрывам, отдельно для каждого сообщения. Также рассматривается проблема валидации алгоритмов в условиях отсутствия тестовых данных. Предложены и апробированы возможные подходы к валидации, основанные на качественных предположениях, описаны результаты экспериментов. Проведен сравнительный анализ производительности двух алгоритмов решения задачи маршрутизации. Два алгоритма, названные RDTNAS-CG и RDTNAS-AQ, были разработаны на основе алгоритмов CGR и Earliest Delivery with All Queues соответственно. Оригинальные алгоритмы были значительно расширены и была разработана дополненная реализация. Валидационные эксперименты были проведены для проверки минимальных требований «качества» к правильности алгоритмов. Сравнительный анализ производительности двух алгоритмов показал, что алгоритм RDTNAS-AQ на несколько порядков быстрее, чем RDTNAS-CG.

  4. Добрынин В.Н., Филозова И.А.
    Технология формирования каталога информационного фонда
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 661-673

    В статье рассматривается подход совершенствования технологий обработки информации на основе логико-семантической сети (ЛСС) «Вопрос–ответ–реакция», направленный на формирование и поддержку каталожной службы, обеспечивающей эффективный поиск ответов на вопросы [Большой энциклопедический словарь, 1998; Касавин, 2009]. В основу такой каталожной службы положены семантические связи, отражающие логику изложения авторской мысли в рамках данной публикации, темы, предметной области. Структурирование и поддержка этих связей позволят работать с полем смыслов, обеспечив новые возможности для исследования корпуса документов электронных библиотек (ЭБ) [Касавин, 2009]. Формирование каталога информационного фонда (ИФ) включает: формирование лексического словаря ИФ; построение дерева классификации ИФ по нескольким основаниям; классификация ИФ по вопросно-ответным темам; формирование поисковых запросов, адекватных дереву классификации вопросно-ответных тем (таблица соответствия «запрос → ответ ↔ {вопрос–ответ–реакция}»); автоматизированный поиск запросов по тематическим поисковым машинам; анализ ответов на запросы; поддержка каталога ЛСС на этапе эксплуатации (пополнение и уточнение каталога). Технология рассматривается для двух ситуаций: 1) ИФ уже сформирован; 2) ИФ отсутствует, его необходимо создать.

    Просмотров за год: 3.
  5. Тищенко В.И., Прочко А.Л.
    Российские участники добровольных распределенных вычислений на платформе BOINC. Статистика участия
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 727-734

    В статье рассмотрено сообщество российских участников добровольных распределенных вычислений (ДРВ), реализуемых на открытой программной платформе BOINC. Для проведения статистического анализа активности российских участников ДРВ использованы данные, полученные при работе с API BOINC, приложением BOINC, и сайтом boincstats.com. Скрипт для получения данных и создания соответствующей базы данных с этого сайта был написан на PHP, для хранения данных, использовались базы данных MySQL.

    В базе данных были аккумулированы показатели по всем российским проектам, включая архивные, что позволило рассчитать показатели, характеризующие поведение российских участников во всех проектах и командах BOINC — абсолютное и относительное количество российских участников, активность участия, количество привнесенных очков в систему, количество участников в каждом из российских проектов, заинтересованность участников в концепции ДРВ.

    Показано, что позиции России в рейтинге стран очень низки и сохраняются практически на одном уровне в течение 4 лет. По мнению авторов исследования, низкие показатели поведения российских участников ДРВ, обусловлены индивидуализмом и закрытостью российских Интернет-пользователей, а также малым интересом к развитию фундаментального научного знания, научному поиску, что, возможно, связано с низким авторитетом как науки в целом, так и гражданской науки, краудсорсинга, в частности, и, соответственно, недостаточном распространении идей использования механизма добровольных распределённых вычислений для реализации исследовательских проектов.

    Просмотров за год: 4. Цитирований: 4 (РИНЦ).
Страницы: « первая предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.