Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'плотность вероятности':
Найдено статей: 17
  1. В работе развивается новый математический метод решения задачи совместного расчета параметров сигнала и шума в условиях распределения Райса, основанный на комбинировании метода максимума правдоподобия и метода моментов. При этом определение искомых параметров задачи осуществляется посредством обработки выборочных измерений амплитуды анализируемого райсовского сигнала. Получена система уравнений для искомых параметров сигнала и шума, а также представлены результаты численных расчетов, подтверждающие эффективность предлагаемого метода. Показано, что решение двухпараметрической задачи разработанным методом не приводит к увеличению объема требуемых вычислительных ресурсов по сравнению с решением однопараметрической задачи. В частном случае малой величины отношения сигнала к шуму получено аналитическое решение задачи. В работе проведено исследование зависимости погрешности и разброса расчетных данных для искомых параметров от количества измерений в экспериментальной выборке. Как показали численные эксперименты, величина разброса расчетных значений искомых параметров сигнала и шума, полученных предлагаемым методом, изменяется обратно пропорционально количеству измерений в выборке. Проведено сопоставление точности оценивания искомых райсовских параметров предлагаемым методом и ранее развитым вариантом метода моментов. Решаемая в работе задача является значимой для целей обработки райсовских данных, в частности, в системах магнитно-резонансной визуализации, в системах ультразвуковой визуализации, при анализе оптических сигналов в системах дальнометрии, в радиолокации, а также при решении многих других научных и прикладных задач, адекватно описываемых статистической моделью Райса.

    Просмотров за год: 11.
  2. Суворов Н.В., Шлеймович М.П.
    Математическая модель биометрической системы распознавания по радужной оболочке глаза
    Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 629-639

    Автоматическое распознавание личности по биометрическому признаку основано на уникальных особенностях или характеристиках людей. Процесс биометрической идентификации представляет собой формирование эталонных шаблонов и сравнение их с новыми входными данными. Алгоритмы распознавания по рисунку радужной оболочки глаза показали на практике высокую точность и малый процент ошибок идентификации. Преимущества радужки над другими биометрическими признаками определяется ее большей степенью свободы (около 249 степеней свободы), избыточной плотностью уникальных признаков и постоянностью во времени. Высокий уровень достоверности распознавания очень важен, потому что позволяет выполнять поиск по большим базам данных и работать в режиме идентификации один-ко-многим, в отличии от режима проверки один-к-одному, который применим дляне большого количества сравнений. Любая биометрическая система идентификации является вероятностной. Для описания качественных характеристик распознавания применяются: точность распознавания, вероятность ложного доступа и вероятность ложного отказа доступа. Эти характеристики позволяют сравнивать методы распознавания личности между собой и оценивать поведение системы в каких-либо условиях. В этой статье объясняется математическая модель биометрической идентификации по радужной оболочке глаза, ее характеристики и анализируются результаты сравнения модели с реальным процессом распознавания. Для решения этой задачи проводится обзор существующих методов идентификации по радужной оболочке глаза, основанных на различных способах формирования вектора уникальных признаков. Описывается разработанный программный комплекс на языке Python, который строит вероятностные распределения и генерирует большие наборы тестовых данных, которые могут быть использованы в том числе для обучения нейронной сети принятия решения об идентификации. В качестве практического применения модели предложен алгоритм синергии нескольких методов идентификации личности по радужной оболочке глаза, позволяющий увеличить качественные характеристики системы, в сравнении с применением каждого метода отдельно.

  3. Басаева Е.К., Каменецкий Е.С., Хосаева З.Х.
    Оценка взаимодействия элиты и народа в постсоветских странах с использованием байесовского подхода
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1233-1247

    Рассматривалась ранее разработанная модель, описывающая динамику социальной напряженности общества, разделенного на две группы: элиту и народ. Эта модель учитывала влияние изменения экономической ситуации и взаимовлияние народа и элиты. Модель модифицирована путем включения в уравнение, описывающее напряженность народа, слагаемого, учитывающего адаптацию народа к создавшейся ситуации.

    Оценка коэффициентов модели является важной задачей, решение которой позволяет получить информацию о характере взаимодействии элиты и народа. Предполагалось, что при оптимальных значениях коэффициентов решение системы уравнений модели наиболее близко к значениям индикатора, характеризующего социальную напряженность. В качестве индикатора социальной напряженности в данной работе использовался нормированный уровень убийств.

    Исследуемая модель содержит семь коэффициентов. Два коэффициента, характеризующие степень влияния изменения экономической ситуации на элиту и народ, приняты равными между собой и одинаковыми для всех стран. Их оценки получены по упрощенной модели, учитывающей только изменение экономической ситуации и допускающей аналитическое решение.

    С помощью байесовского подхода проведена оценка остальных пяти коэффициентов модели для постсоветских стран. Для всех рассматриваемых стран априорные плотности вероятностей четырех коэффициентов принимались одинаковыми. Априорная плотность вероятности пятого коэффициента считалась зависящей от режима правления (авторитарный или переходный). Принималось, что расчетное значение социальной напряженности совпадает с соответствующим значением индикатора напряженности в тех случаях, когда разность между ними не превышала 5%.

    Проведенные расчеты показали, что для постсоветских стран получено хорошее совпадение расчетных значений напряженности народа и нормированного уровня убийств. Отметим, что совпадение удовлетворительно только в среднем, что естественно для достаточно грубой модели.

    В работе получены следующие основные результаты: под влиянием некоторых значительных событий в 40% постсоветских стран наблюдалось быстрое изменение характера взаимодействия элиты и народа; региональные особенности оказывают некоторое влияние на взаимодействие элиты и народа; тип правления не оказывает существенного влияния на взаимодействие элиты и народа; предложен способ оценки стабильности страны по величине коэффициентов модели.

  4. Шумов В.В.
    Модель обоснования направлений сосредоточения усилий пограничной охраны на уровне государства
    Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 187-196

    Важнейшим принципом военной науки и пограничной безопасности является принцип сосредоточения основных усилий на главных направлениях и задачах. На тактическом уровне имеется множество математических моделей для вычисления оптимального распределения ресурса по направлениям и объектам, тогда как на уровне государства соответствующие модели отсутствуют. Используя статистические данные о результатах охраны границы США, вычислен параметр пограничной производственной функции экспоненциального типа, отражающий организационно-технологические возможности пограничной охраны. Производственная функция определяет зависимость вероятности задержания нарушителей от плотности пограничников на километр границы. Финансовые показатели в производственной функции не учитываются, поскольку бюджет на содержание пограничников и оборудование границы коррелирует с количеством пограничных агентов. Определена целевая функция пограничной охраны — суммарный предотвращенный ущерб от задержанных нарушителей с учетом их ожидаемой опасности для государства и общества, подлежащий максимизации. Используя условие Слейтера, найдено решение задачи — вычислены оптимальные плотности пограничной охраны по регионам государства. Имея модель распределения ресурсов, на примере трех пограничных регионов США решена и обратная задача — оценены угрозы в регионах по известному распределению ресурсов. Ожидаемая опасность от отдельного нарушителя на американо-канадской границе в 2–5 раз выше, чем от нарушителя на американо-мексиканской границе. Результаты расчетов соответствуют взглядам специалистов по безопасности США — на американо-мексиканской границе в основном задерживаются нелегальные мигранты, тогда как потенциальные террористы предпочитают использовать другие каналы проникновения в США (включая американо-канадскую границу), где риски быть задержанными минимальны. Также результаты расчетов соответствуют сложившейся практике охраны границы: в 2013 г. численность пограничников вне пунктов пропуска на американо-мексиканской границе увеличилась в 2 раза по сравнению с 2001 г., тогда как на американо-канадской границе — в 4 раза. Практика охраны границы и взгляды специалистов дают основания для утверждения о верификации модели.

    Просмотров за год: 26.
  5. Светлов К.В., Иванов С.А.
    Стохастическая модель числа сторонников политического лидера в цифровом публичном пространстве
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 979-997

    В представленной статье мы исследуем процесс изменения рейтинга одобрения политического лидера под влиянием процессов, протекающих в цифровом публичном пространстве. Драйвером указанных изменений служит взаимодействие пользователей онлайн-площадок (информационных и новостных ресурсов, блогов, социальных сетей), в результате которого они могут обмениваться друг с другом мнениями и формулировать свою позицию в отношении политика. Помимо межличностного взаимодействия мы рассмотрим такие факторы, как информационное воздействие, выражающееся в создании информационного потока, имеющего заданную мощность и тональность (положительную или отрицательную, в контексте влияния на имидж политического лидера), а также наличие группы агентов (лидеров мнений), оказывающих поддержку политику или же, наоборот, негативно влияющих на его представление в медийном пространстве.

    Математической основой представленного исследования является модель Кирмана, имеющая истоки в биологии и первоначально нашедшая свое применение в экономике. В рамках даннойм одели считается, что каждый участник находится в одном из двух возможных состояний, а также задается скачкообразный марковский процесс, описывающий переходы между этими состояниями. Для рассматриваемой нами задачи данными состояниями являются 0 или 1, в зависимости от того, является ли конкретный агент сторонником политика и одобряет его деятельность или же нет. Пользуясь аппаратом теории марковских процессов, мы находим его диффузионное приближение, известное как процесс Якоби. При помощи спектрального разложения для инфинитезимального оператора данного процесса мы имеем возможность найти аналитическое представление для плотности переходных вероятностей.

    Анализируя вероятности, полученные указанным образом, можно оценить влияние отдельных факторов модели: мощность и тональность новостных сообщений, доступных для пользователей онлайн-пространства и релевантных для задач формирования рейтинга, а также численности сторонников или противников политика. Далее, пользуясь найденными собственными функциями и значениями, мы выводим выражения для оценки условных математических ожиданий рейтинга политика, что может служить основой для построения прогнозов, важных для задач формирования стратегии представления политического лидера в онлайн-среде.

  6. Петров А.П., Подлипская О.Г., Подлипский О.К.
    Моделирование динамики политических позиций: плотность сети и шансы меньшинства
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 785-796

    Некоторые информационные противоборства завершаются тем, что практически все общество принимает одну точку зрения, другие приводят к тому, что партия большинства получает лишь небольшой перевес над партией меньшинства. Возникает вопрос о том, какие сетевые характеристики общества способствуют тому, чтобы меньшинство могло сохранять некоторую значимую численность. С учетом того, что некоторые общества являются более связными, чем другие, в смысле того, что они имеют более высокую плотность социальных связей, данный вопрос конкретизируется следующим образом: какой эффект плотности социальных связей оказывается на шансы меньшинства сохранить не слишком малую численность? Способствует ли более высокая плотность более полной победе большинства или, наоборот, шансам меньшинства? Для изучения этого вопроса рассматривается информационное противоборство двух партий, называемых левой и правой, в населении, представленном в виде сети, узлами которой являются индивиды, а связи соответствуют их знакомству и описывают взаимное влияние. В каждый из дискретных моментов времени каждый индивид принимает решение о поддержке той или иной партии, основываясь на своей установке, т.е. предрасположенности к левой либо правой партии, и учитывая влияние своих соседей по сети. Влияние состоит в том, что каждый сосед с определенной вероятностью посылает данному индивиду сигнал в пользу той партии, которую сам в данный момент поддерживает. Если сосед меняет свою партийность, то он начинает агитировать данного индивида за свою «новую» партию. Такие процессы создают динамику, т.е. протяженное во времени изменение партийности индивидов. Продолжительность противоборства является экзогенно заданной, последний момент может быть условно ассоциирован с днем выборов. Изложенная модель численно реализована на безмасштабной сети. Проведены численные эксперименты для различных значений плотности сети. Ввиду наличия стохастических элементов в модели, для каждого значения плотности проведено 200 прогонов, для каждого из которых определена конечная численность сторонников каждой изпа ртий. Получено, что при увеличении плотности увеличиваются шансы того, что победившая точка зрения охватит практически все население. И наоборот, низкая плотность сети способствует шансам меньшинства сохранить значимую численность.

  7. Гаранина О.С., Романовский М.Ю.
    Экспериментальное исследование распределения расходов граждан РФ на новые автомобили и их соответствие доходам
    Компьютерные исследования и моделирование, 2012, т. 4, № 3, с. 621-629

    Экспериментально исследуется вопрос о распределении расходов граждан в современной России. Репрезентативной группой приобретаемых товаров были выбраны, как и ранее, новые автомобили. Результаты анализа продаж новых автомобилей за 2007–2009 годы представлены ниже. Основное «тело» плотности вероятности найти определенное количество автомобилей в зависимости от их цены, начиная с некоторой начальной цены вплоть до ~ 60 k$, является экспоненциальным распределением. Обнаруженной особенностью распределения (в отличие от 2003–2005 гг.) было наличие минимальной цены. Для дорогих автомобилей («хвост» распределения) асимптотика есть распределение Парето с показателем степени гиперболы несколько большим, чем измеренный ранее для 2003–2005 гг. Результаты оказались аналогичны прямым измерениям распределения налоговых деклараций по их величине, поданных в США в 2004 г., где также наблюдалось экспоненциальное распределение доходов граждан, начиная с некоторого минимального, с некоторой асимптотикой в виде распределения Парето.

    Цитирований: 3 (РИНЦ).
Страницы: предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.