Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'параллельные вычисления':
Найдено статей: 58
  1. От редакции
    Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 5-7
  2. От редакции
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 695-696
  3. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 5-10
  4. Предложено обобщение блочного клеточного автомата Марголуса на гексагональную сетку. Проведена статистическая обработка результатов вероятностных клеточно-автоматных вычислений для ряда модификаций схемы, решающей тестовую задачу диффузии вещества. Показано, что выбор блоков в виде гексагонов на 25% эффективнее, чем в виде Y-блоков. Показано, что алгоритмы имеют полиномиальную сложность, причем степень полинома для параллельных вычислителей лежит в пределах 0.6÷0.8, а для последовательных — в пределах 1.5÷1.7. Исследовалось влияние внедренных в поле клеточного автомата дефектных ячеек на скорость сходимости.

    Просмотров за год: 8. Цитирований: 4 (РИНЦ).
  5. Свириденко А.Б.
    Прямые мультипликативные методы для разреженных матриц. Несимметричные линейные системы
    Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 833-860

    Малая практическая ценность многих численных методов решения несимметричных систем линейных уравнений с плохо обусловленными матрицами объясняется тем, что эти методы в реальных условиях ведут себя совсем иначе, чем в случае точных вычислений. Исторически вопросам устойчивости не отводилось достаточного внимания, как в численной алгебре «средних размеров», а делался акцент на решении задач максимального порядка при данных возможностях вычислительной машины, в том числе за счет некоторой потери точности результатов. Поэтому главными объектами исследования были: наиболее целесообразное хранение информации, заключенной в разреженной матрице; поддержание наибольшей степени ее разреженности на всех этапах вычислительного процесса. Таким образом, разработка эффективных численных методов решения неустойчивых систем относится к актуальным проблемам вычислительной математики.

    В данной работе рассмотрен подход к построению численно устойчивых прямых мультипликативных методов решения систем линейных уравнений, учитывающих разреженность матриц, представленных в упакованном виде. Преимущество подхода состоит в возможности минимизации заполнения главных строк мультипликаторов без потери точности результатов, причем изменения в позиции очередной обрабатываемой строки матрицы не вносятся, что позволяет использовать статические форматы хранения данных. Рассмотрен формат хранения разреженных матриц, преимущество которого состоит в возможности параллельного выполнения любых матричных операций без распаковывания, что значительно сокращает время выполнения операций и объем занимаемой памяти.

    Прямые мультипликативные методы решения систем линейных уравнений являются наиболее приспособленными для решения задач большого размера на ЭВМ: разреженные матрицы системы позволяют получать мультипликаторы, главные строки которых также разрежены, а операция умножения вектора-строки на мультипликатор по трудоемкости пропорциональна числу ненулевых элементов этого мультипликатора.

    В качестве прямого продолжения данной работы в основу построения прямого мультипликативного алгоритма линейного программирования предлагается положить модификацию прямого мультипликативного алгоритма решения систем линейных уравнений, основанного на интеграции техники метода линейного программирования для выбора ведущего элемента. Прямые мультипликативные методы линейного программирования являются наиболее приспособленными и для построения прямого мультипликативного алгоритма задания направления спуска в ньютоновских методах безусловной оптимизации путем интеграции одной из существующих техник построения существенно положительно-определенной матрицы вторых производных.

    Просмотров за год: 20. Цитирований: 2 (РИНЦ).
  6. Матюшкин И.В., Заплетина М.А.
    Обзор по тематике клеточных автоматов на базе современных отечественных публикаций
    Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 9-57

    Проведен анализ отечественных публикаций за 2013–2017 гг. включительно, посвященных клеточным автоматам (КА). Большая их часть связана с математическим моделированием. Наукометрическими графиками за 1990–2017 гг. доказана актуальность тематики. Обзор позволяет выделить персоналии и научные направления/школы в современной российской науке, выявить их оригинальность или вторичность по сравнению с мировым уровнем. За счет выбора национальной, а не мировой, базы публикаций обзор претендует на полноту (из 526 просмотренных ссылок научным значением обладают около 200).

    В приложении к обзору даются первичные сведения о КА — игра «Жизнь», теорема о садах Эдема, элементарные КА (вместе с диаграммой де Брюина), блочные КА Марголуса, КА с альтернацией. Причем акцентируется внимание на трех важных для моделирования семантиках КА — традициях фон Неймана, Цузе и Цетлина, а также показывается родство с концепциями нейронных сетей и сетей Петри. Выделены условные 10 работ по КА, с которыми должен быть знаком любой специалист по КА. Некоторые важные работы 1990-х гг. и более поздние перечислены во введении.

    Затем весь массив публикаций разбит на рубрики: «Модификации КА и другие сетевые модели» (29 %), «Математические свойства КА и связь с математикой» (5 %), «Аппаратные реализации» (3 %), «Программные реализации» (5 %), «Обработка данных, распознавание и криптография» (8 %), «Механика, физика и химия» (20 %), «Биология, экология и медицина» (15 %), «Экономика, урбанистика и социология» (15 %). В скобках указана доля тематики в массиве. Отмечается рост публикаций по КА в гуманитарной сфере, а также появление гибридных подходов, уводящих в сторону от классических КА.

    Просмотров за год: 58.
  7. Спевак Л.Ф., Нефедова О.А.
    Численное решение двумерного нелинейного уравнения теплопроводности с использованием радиальных базисных функций
    Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 9-22

    Работа посвящена численному решению задачи о движении тепловой волны для вырождающегося нелинейного уравнения второго порядка параболического типа с источником. Нелинейность уравнения обусловлена степенной зависимостью коэффициента теплопроводности от температуры. Рассматривается задача для случая двух пространственных переменных при краевом условии, задающем закон движения фронта тепловой волны. Предложен новый алгоритм решения на основе разложения по радиальным базисным функциям и метода граничных элементов. Решение строится по шагам по времени с разностной аппроксимацией по времени. На каждом шаге решается краевая задача для уравнения Пуассона, соответствующего исходному уравнению для фиксированного момента времени. Решение такой задачи строится итерационно в виде суммы частного решения, удовлетворяющего неоднородному уравнению, и решения соответствующего однородного уравнения, удовлетворяющего граничным условиям. Однородное уравнение решается методом граничных элементов, частное решение ищется методом коллокаций с помощью разложения неоднородности по радиальным базисным функциям. Вычислительный алгоритм оптимизирован за счет распараллеливания вычислений. Алгоритм реализован в виде программы, написанной на языке программирования С++. Организация параллельных вычислений построена с использованием открытого стандарта OpenCL, что позволило запускать одну и ту же программу, выполняющую параллельные вычисления, как на центральных многоядерных процессорах, так и на графических процессорах. Для оценки эффективности предложенного метода решения и корректности разработанной вычислительной технологии были решены тестовые примеры. Результаты расчетов сравнивались как с известными точными решениями, так и с данными, полученными авторами ранее в других работах. Проведена оценка точности решений и времени проведения расчетов. Проведен анализ эффективности использования различных систем радиальных базисных функций для решения задач рассматриваемого типа. Определена наиболее подходящая система функций. Проведенный комплексный вычислительный эксперимент показал более высокую точность расчетов по предложенному новому алгоритму по сравнению с разработанным ранее.

  8. Басалаев А.В., Клосс Ю.Ю., Любимов Д.Ю., Князев А.Н., Шувалов П.В., Щербаков Д.В., Нахапетян А.В.
    Проблемно-моделирующая среда численного решения уравнения Больцмана на кластерной архитектуре для анализа газокинетических процессов в межэлектродном зазоре термоэмиссионных преобразователей
    Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 219-232

    Данная работа посвящена применению метода численного решения уравнения Больцмана для решения задачи моделирования поведения радионуклидов в полости межэлектродного зазора многоэлементного электрогенерирующего канала. Анализ газокинетических процессов термоэмиссионных преобразователей может быть использован для ресурсного обоснования конструкции электрогенерирующего канала. В работе рассматриваются две конструктивные схемы канала: с одно- и двусторонним выводом газообразных продуктов деления в вакуумно-цезиевую систему. Анализ проводился с использованием двумерного уравнения переноса второго порядка точности для решения левой части и проекционного метода для решения правой части — интеграла столкновений. В ходе работы был реализован программный комплекс, позволяющий производить расчет на кластерной архитектуре за счет использования алгоритма распараллеливания левой части уравнения, результаты анализа зависимости эффективности вычисления от числа параллельных узлов представлены в работе. С использованием программного комплекса были проведены расчеты и получены данные по распределениям давлений газообразных продуктов деления в полости зазора, рассмотрены различные варианты начальных давлений и потоков, обнаружена зависимость давления радионуклидов в области коллектора от давлений цезия на концах зазора. Полученные результаты качественно подтверждаются испытаниями в петлевом канале ядерного реактора.

    Просмотров за год: 24.
  9. Способин А.В.
    Бессеточный алгоритм расчета взаимодействия крупных частиц с ударным слоем в сверхзвуковых гетерогенных потоках
    Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1007-1027

    Работа посвящена численному моделированию двухфазных течений, а именно расчету сверхзвукового обтекания затупленного тела потоком вязкого газа с примесью относительно крупных частиц, масса которых позволяет после отражения от поверхности выйти за пределы ударного слоя, двигаясь по инерции навстречу набегающему потоку. Натурные и вычислительные эксперименты показывают, что движение высокоинерционных частиц существенным образом изменяет структуру течения газа в ударном слое, а формирующиеся при этом направленные на тело импактные струи вызывают увеличение давления газа вблизи участков поверхности и кратный рост конвективного теплового потока.

    Построена математическая модель обтекания затупленного тела сверхзвуковым потоком вязкого газа с твердыми частицами. Решение системы нестационарных уравнений Навье–Стокса в консервативных переменных осуществляется бессеточным методом, в основе которого лежит аппроксимация частных пространственных производных газодинамических величин и содержащих их функций методом наименьших квадратов на множестве распределенных в области расчета узлов. Расчет невязких потоков выполняется методом HLLC в сочетании с MUSCL-реконструкцией третьего порядка, вязких потоков — схемой второго порядка. МНК-аппроксимация частных производных параметров газа по направлению также применяется для реализации краевых условий Неймана на выходной границе области расчета, а также поверхностях обтекаемых тел, которые считаются изотермическими твердыми стенками.

    Каждое движущееся тело окружено облаком расчетных узлов, принадлежащих его домену и перемещающихся вместе с ним в пространстве. Реализовано два подхода к моделированию перемещения объектов с учетом обратного влияния на течение газа: метод скользящих облаков фиксированной формы и эволюции единого облака узлов, представляющего собой объединение узлов разных доменов. Проведенные численные эксперименты подтвердили применимость предложенных методов к решению целевых задач моделирования движения крупных частиц в сверхзвуковом потоке.

    Выполнена программная реализация представленных алгоритмов на основе технологии параллельных гетерогенных вычислений OpenCL. Представлены результаты моделирования движения крупной частицы вдоль оси симметрии сферы навстречу набегающему потоку с числом Маха $\mathrm{M}=6$.

  10. Кузьмин И.М., Тонков Л.Е., Копысов С.П.
    Алгоритмическое и программное обеспечение решения задач взаимодействия конструкции с жидкостью/газом на гибридных вычислительных системах
    Компьютерные исследования и моделирование, 2013, т. 5, № 2, с. 153-164

    Рассматривается создание прикладного программного интерфейса с выделением самостоятельного приложения для синхронизации и обмена данными, в котором реализуются отдельные подзадачи связывания для решения сопряженных задач взаимодействия конструкции с жидкостью или газом. Обсуждаются алгоритмы связывания подзадач и деформирования расчетных сеток. На численных примерах показывается возможность решения ряда задач на кластерах с графическими процессорами.

    Просмотров за год: 1. Цитирований: 11 (РИНЦ).
Страницы: предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.