Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'относительная гладкость':
Найдено статей: 6
  1. От редакции
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 773-776
  2. Сухинов А.И., Чистяков А.Е., Проценко Е.А.
    Разностная схема для решения задач гидродинамики при больших сеточных числах Пекле
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 833-848

    В работе рассматриваются развитие и применение метода учета заполненности прямоугольных ячеек материальной средой, в частности жидкостью для повышения гладкости и точности конечно-разностного решения задач гидродинамики со сложной формой граничной поверхности. Для исследования возможностей предлагаемых разностных схем рассмотрены две задачи вычислительной гидродинамики — пространственно-двумерного течения вязкой жидкости между двумя соосными полуцилиндрами и переноса веществ между соосными полуцилиндрами. Аппроксимация задач по времени выполнена на основе схем расщепления по физическим процессам. Дискретизация операторов диффузии и конвекции выполнена на основе интегроинтерполяционного метода с учетом заполненности ячеек и без ее учета. Для решения задачи диффузии – конвекции при больших сеточных числах Пекле предложено использовать разностную схему, учитывающую функцию заполненности ячеек, и схему, построенную на основе линейной комбинации разностных схем «кабаре» и «крест» с весовыми коэффициентами, полученными в результате минимизации погрешности аппроксимации при малых числах Куранта. Для оценки точности численного решения в качестве эталона используется аналитическое решение, описывающее течение Куэтта – Тейлора. В случае непосредственного использования прямоугольных сеток (ступенчатой аппроксимации границ) относительная погрешность расчетов достигает 70 %, при тех же условиях использование предлагаемого метода позволяет уменьшить погрешность до 6%. Показано, что дробление прямоугольной сетки в 2–8 раз по каждому из пространственных направлений не приводит к такому же повышению точности, которой обладают численные решения, полученные с учетом заполненности ячеек. Предложенные разностные схемы, построенные на основе линейной комбинации разностных схем «кабаре» и «крест» с весовыми коэффициентами 2/3 и 1/3 соответственно, полученные в результате минимизации порядка погрешности аппроксимации, для задачи диффузии – конвекции обладают меньшей сеточной вязкостью и, как следствие, точнее описывают поведение решения в случае больших сеточных чисел Пекле.

  3. Гладин Е.Л., Зайнуллина К.Э.
    Метод эллипсоидов для задач выпуклой стохастической оптимизации малой размерности
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1137-1147

    В статье рассматривается задача минимизации математического ожидания выпуклой функции. Задачи такого вида повсеместны в машинном обучении, а также часто возникают в ряде других приложений. На практике для их решения обычно используются процедуры типа стохастического градиентного спуска (SGD). В нашей работе предлагается решать такие задачи с использованием метода эллипсоидов с мини-батчингом. Алгоритм имеет линейную скорость сходимости и может оказаться эффективнее SGD в ряде задач. Это подтверждается в наших экспериментах, исходный код которых находится в открытом доступе. Для получения линейной скорости сходимости метода не требуется ни гладкость, ни сильная выпуклость целевой функции. Таким образом, сложность алгоритма не зависит от обусловленности задачи. В работе доказывается, что метод эллипсоидов с наперед заданной вероятностью находит решение с желаемой точностью при использовании мини-батчей, размер которых пропорционален точности в степени -2. Это позволяет выполнять алгоритм параллельно на большом числе процессоров, тогда как возможности для батчараллелизации процедур типа стохастического градиентного спуска весьма ограничены. Несмотря на быструю сходимость, общее количество вычислений градиента для метода эллипсоидов может получиться больше, чем для SGD, который неплохо сходится и при маленьком размере батча. Количество итераций метода эллипсоидов квадратично зависит от размерности задачи, поэтому метод подойдет для относительно небольших размерностей.

  4. Гладин Е.Л., Бородич Е.Д.
    Редукция дисперсии для минимаксных задач с небольшой размерностью одной из переменных
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 257-275

    Статья посвящена выпукло-вогнутым седловым задачам, в которых целевая функция является суммой большого числа слагаемых. Такие задачи привлекают значительное внимание математического сообщества в связи с множеством приложений в машинном обучении, включая adversarial learning, adversarial attacks и robust reinforcement learning, и это лишь некоторые из них. Отдельные функции в сумме обычно представляют собой ошибку, связанную с объектом из выборки. Кроме того, формулировка допускает (возможно, негладкий) композитный член. Такие слагаемые часто отражают регуляризацию в задачах машинного обучения. Предполагается, что размерность одной из групп переменных относительно мала (около сотни или меньше), а другой — велика. Такой случай возникает, например, при рассмотрении двойственной формулировки задачи минимизации с умеренным числом ограничений. Предлагаемый подход основан на использовании метода секущей плоскости Вайды для минимизации относительно внешнего блока переменных. Этот алгоритм оптимизации особенно эффективен, когда размерность задачи не очень велика. Неточный оракул для метода Вайды вычисляется через приближенное решение внутренней задачи максимизации, которая решается ускоренным алгоритмом с редукцией дисперсии Katyusha. Таким образом, мы используем структуру задачи для достижения быстрой сходимости. В исследовании получены отдельные оценки сложности для градиентов различных компонент относительно различных переменных. Предложенный подход накладывает слабые предположения о целевой функции. В частности, не требуется ни сильной выпуклости, ни гладкости относительно низкоразмерной группы переменных. Количество шагов предложенного алгоритма, а также арифметическая сложность каждого шага явно зависят от размерности внешней переменной, отсюда предположение, что она относительно мала.

  5. Стонякин Ф.С., Савчyк О.С., Баран И.В., Алкуса М.С., Титов А.А.
    Аналоги условия относительной сильной выпуклости для относительно гладких задач и адаптивные методы градиентного типа
    Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 413-432

    Данная статья посвящена повышению скоростных гарантий численных методов градиентного типа для относительно гладких и относительно липшицевых задач минимизации в случае дополнительных предположений о некоторых аналогах сильной выпуклости целевой функции. Рассматриваются два класса задач: выпуклые задачи с условием относительного функционального роста, а также задачи (вообще говоря, невыпуклые) с аналогом условия градиентного доминирования Поляка – Лоясиевича относительно дивергенции Брэгмана. Для первого типа задач мы предлагаем две схемы рестартов методов градиентного типа и обосновываем теоретические оценки сходимости двух алгоритмов с адаптивно подбираемыми параметрами, соответствующими относительной гладкости или липшицевости целевой функции. Первый из этих алгоритмов проще в части критерия выхода из итерации, но для него близкие к оптимальным вычислительные гарантии обоснованы только на классе относительно липшицевых задач. Процедура рестартов другого алгоритма, в свою очередь, позволила получить более универсальные теоретические результаты. Доказана близкая к оптимальной оценка сложности на классе выпуклых относительно липшицевых задач с условием функционального роста, а для класса относительно гладких задач с условием функционального роста получены гарантии линейной скорости сходимости. На классе задач с предложенным аналогом условия градиентного доминирования относительно дивергенции Брэгмана были получены оценки качества выдаваемого решения с использованием адаптивно подбираемых параметров. Также мы приводим результаты некоторых вычислительных экспериментов, иллюстрирующих работу методов для второго исследуемого в настоящей статье подхода. В качестве примеров мы рассмотрели линейную обратную задачу Пуассона (минимизация дивергенции Кульбака – Лейблера), ее регуляризованный вариант, позволяющий гарантировать относительную сильную выпуклость целевой функции, а также некоторый пример относительно гладкой и относительно сильно выпуклой задачи. В частности, с помощью расчетов показано, что относительно сильно выпуклая функция может не удовлетворять введенному относительному варианту условия градиентного доминирования.

  6. Савчук О.С., Титов А.А., Стонякин Ф.С., Алкуса М.С.
    Адаптивные методы первого порядка для относительносильновыпуклых задач оптимизации
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 445-472

    Настоящая статья посвящена некоторым адаптивным методам первого порядка для оптимизационных задач с относительно сильно выпуклыми функционалами. Недавно возникшее в оптимизации понятие относительной сильной выпуклости существенно расширяет класс выпуклых задач посредством замены в определении евклидовой нормы расстоянием в более общем смысле (точнее — расхождением или дивергенцией Брегмана). Важная особенность рассматриваемых в настоящей работе классов задач — обобщение стандартных требований к уровню гладкости целевых функционалов. Точнее говоря, рассматриваются относительно гладкие и относительно липшицевые целевые функционалы. Это может позволить применять рассматриваемую методику для решения многих прикладных задач, среди которых можно выделить задачу о нахождении общей точки системы эллипсоидов, а также задачу бинарной классификации с помощью метода опорных векторов. Если целевой функционал минимизационной задачи выпуклый, то условие относительной сильной выпуклости можно получить посредством регуляризации. В предлагаемой работе впервые предложены адаптивные методы градиентного типа для задач оптимизации с относительно сильно выпуклыми и относительно липшицевыми функционалами. Далее, в статье предложены универсальные методы для относительно сильно выпуклых задач оптимизации. Указанная методика основана на введении искусственной неточности в оптимизационную модель. Это позволило обосновать применимость предложенных методов на классе относительно гладких, так и на классе относительно липшицевых функционалов. При этом показано, как можно реализовать одновременно адаптивную настройку на значения параметров, соответствующих как гладкости задачи, так и введенной в оптимизационную модель искусственной неточности. Более того, показана оптимальность оценок сложности с точностью до умножения на константу для рассмотренных в работе универсальных методов градиентного типа для обоих классов относительно сильно выпуклых задач. Также в статье для задач выпуклого программирования с относительно липшицевыми функционалами обоснована возможность использования специальной схемы рестартов алгоритма зеркального спуска и доказана оптимальная оценка сложности такого алгоритма. Также приводятся результаты некоторых вычислительных экспериментов для сравнения работы предложенных в статье методов и анализируется целесообразность их применения.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.