Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'оптимальный метод':
Найдено статей: 110
  1. От редакции
    Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 201-203
    Просмотров за год: 29.
  2. Рассматривается подход к построению методов решения задачи квадратичного программирования для расчета направления спуска в ньютоновских методах минимизации гладкой функции на множестве, заданном набором линейных равенств. Подход состоит из двух этапов.

    На первом этапе задача квадратичного программирования преобразуется численно устойчивым прямым мультипликативным алгоритмом в эквивалентную задачу о проектировании начала координат на линейное многообразие, что определяет новую математическую формулировку двойственной квадратичной задачи. Для этого предложен численно устойчивый прямой мультипликативный метод решения систем линейных уравнений, учитывающий разреженность матриц, представленных в упакованном виде. Преимущество подхода состоит в расчете модифицированных факторов Холесского для построения существенно положительно определенной матрицы системы уравнений и ее решения в рамках одной процедуры, а также в возможности минимизации заполнения главных строк мультипликаторов без потери точности результатов. Причем изменения в позиции очередной обрабатываемой строки матрицы не вносятся, что позволяет использовать статические форматы хранения данных.

    На втором этапе необходимые и достаточные условия оптимальности в форме Куна–Таккера определяют расчет направления спуска — решение двойственной квадратичной задачи сводится к решению системы линейных уравнений с симметричной положительно определенной матрицей коэффициентов для расчета множителей Лагранжа и к подстановке решения в формулу для расчета направления спуска.

    Доказано, что предложенный подход к расчету направления спуска численно устойчивыми прямыми мультипликативными методами на одной итерации требует по кубическому закону меньше вычислений, чем одна итерация по сравнению с известным двойственным методом Гилла и Мюррея. Кроме того, предложенный метод допускает организацию вычислительного процесса с любой начальной точки, которую пользователь выберет в качестве исходного приближения решения.

    Представлены варианты постановки задачи о проектировании начала координат на линейное многообразие, выпуклый многогранник и вершину выпуклого многогранника. Также описаны взаимосвязь и реализация методов решения этих задач.

    Просмотров за год: 6.
  3. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 229-233
  4. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 689-692
  5. От редакции
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 773-776
  6. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 5-8
  7. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 259-261
  8. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 471-473
  9. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 939-942
  10. От редакции
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 5-8
Страницы: предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.