Текущий выпуск Номер 3, 2024 Том 16

Все выпуски

Результаты поиска по 'новые математические формулировки':
Найдено статей: 9
  1. Рассматривается подход к построению методов решения задачи квадратичного программирования для расчета направления спуска в ньютоновских методах минимизации гладкой функции на множестве, заданном набором линейных равенств. Подход состоит из двух этапов.

    На первом этапе задача квадратичного программирования преобразуется численно устойчивым прямым мультипликативным алгоритмом в эквивалентную задачу о проектировании начала координат на линейное многообразие, что определяет новую математическую формулировку двойственной квадратичной задачи. Для этого предложен численно устойчивый прямой мультипликативный метод решения систем линейных уравнений, учитывающий разреженность матриц, представленных в упакованном виде. Преимущество подхода состоит в расчете модифицированных факторов Холесского для построения существенно положительно определенной матрицы системы уравнений и ее решения в рамках одной процедуры, а также в возможности минимизации заполнения главных строк мультипликаторов без потери точности результатов. Причем изменения в позиции очередной обрабатываемой строки матрицы не вносятся, что позволяет использовать статические форматы хранения данных.

    На втором этапе необходимые и достаточные условия оптимальности в форме Куна–Таккера определяют расчет направления спуска — решение двойственной квадратичной задачи сводится к решению системы линейных уравнений с симметричной положительно определенной матрицей коэффициентов для расчета множителей Лагранжа и к подстановке решения в формулу для расчета направления спуска.

    Доказано, что предложенный подход к расчету направления спуска численно устойчивыми прямыми мультипликативными методами на одной итерации требует по кубическому закону меньше вычислений, чем одна итерация по сравнению с известным двойственным методом Гилла и Мюррея. Кроме того, предложенный метод допускает организацию вычислительного процесса с любой начальной точки, которую пользователь выберет в качестве исходного приближения решения.

    Представлены варианты постановки задачи о проектировании начала координат на линейное многообразие, выпуклый многогранник и вершину выпуклого многогранника. Также описаны взаимосвязь и реализация методов решения этих задач.

    Просмотров за год: 6.
  2. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 939-942
  3. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 485-489
  4. Матюшкин И.В.
    Клеточно-автоматные методы решения классических задач математической физики на гексагональной сетке. Часть 2
    Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 547-566

    Во второй части статьи, носящей более прикладной характер, завершается рассмотрение трех классических уравнений математической физики (Лапласа, диффузии и волнового) простейшими численными схемами в формулировке клеточных автоматов (КА). На нескольких примерах, относящихся к гексагональной сетке, показана специфика такого решения и подтверждаются выводы первой части, в частности о выполнении свойства консервативности и эффекте избыточной гексагональной симметрии (ИГС).

    При решении задачи Неймана для колебаний круглой мембраны показана критичность требований к дискретизации условий для граничных КА-ячеек. Для квазиодномерной задачи «диффузия в полупространство» сравниваются КА-расчеты, проводимые по простой схеме и с использованием обобщенного блочно-поворотного механизма Марголуса. При решении смешанной задачи для классического случая колебания круглой мембраны с закрепленными концами показано, что одновременное применение метода Кранка–Николсон и учет членов второго порядка позволяет избежать ИГС-эффекта, наблюдаемого нами для более простой схемы. С точки зрения КА центральное место занимает уравнение диффузии, на пути решения которого на бесконечных временах находится решение краевой задачи для уравнения Лапласа, а путем введения вектор-переменной становится разрешимо волновое уравнение (по крайней мере скалярное).

    На примере центрально-симметричной задачи Неймана продемонстрирован новый способ введения пространственных производных в postfix-процедуру КА, отражающую временные производные (основанием является уравнение непрерывности). Для случая центральной симметрии эмпирически найдено значение константы, связывающее эти производные. Показано, что препятствием к применению КА-методов для таких задач являются низкая скорость сходимости и точность, лимитируемая точностью дискретизации границ, а не формальной точностью метода (4-й порядок); наша рекомендация состоит в использовании техники multigrid. При решении квазиодномерного уравнения диффузии (двумерным КА) показано, что блочно-поворотный КА (по механизму Марголуса) более эффективен, чем простой КА.

    Просмотров за год: 6.
  5. Свириденко А.Б.
    Прямые мультипликативные методы для разреженных матриц. Ньютоновские методы
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 679-703

    Рассматривается численно устойчивый прямой мультипликативный алгоритм решения систем линейных уравнений, учитывающий разреженность матриц, представленных в упакованном виде. Преимущество алгоритма состоит в возможности минимизации заполнения главных строк мультипликаторов без потери точности результатов, причем изменения в позиции очередной обрабатываемой строки матрицы не вносятся, что позволяет использовать статические форматы хранения данных. Решение системы линейных уравнений прямым мультипликативным алгоритмом — это, как и решение с помощью $LU$-разложения, просто другая схема реализации метода исключения Гаусса.

    В данной работе этот алгоритм лежит в основе решения следующих задач.

    Задача 1. Задание направления спуска в ньютоновских методах безусловной оптимизации путем интеграции одной из известных техник построения существенно положительно определенной матрицы. Такой подход позволяет ослабить или снять дополнительные специфические трудности, обусловленные необходимостью решения больших систем уравнений с разреженными матрицами, представленных в упакованном виде.

    Задача 2. Построение новой математической формулировки задачи квадратичного программирования и новой формы задания необходимых и достаточных условий оптимальности. Они достаточно просты и могут быть использованы для построения методов математического программирования, например для поиска минимума квадратичной функции на многогранном множестве ограничений, основанного на решениях систем линейных уравнений, размерность которых не выше числа переменных целевой функции.

    Задача 3. Построение непрерывного аналога задачи минимизации вещественного квадратичного многочлена от булевых переменных и новой формы задания необходимых и достаточных условий оптимальности для разработки методов их решения за полиномиальное время. В результате исходная задача сводится к задаче поиска минимального расстояния между началом координат и угловой точкой выпуклого многогранника (полиэдра), который является возмущением $n$-мерного куба и описывается системой двойных линейных неравенств с верхней треугольной матрицей коэффициентов с единицами на главной диагонали. Исследованию подлежат только две грани, одна из которых или обе содержат вершины, ближайшие к началу координат. Для их вычисления достаточно решить $4n – 4$ систем линейных уравнений и выбрать среди них все ближайшие равноудаленные вершины за полиномиальное время. Задача минимизации квадратичного полинома является $NP$-трудной, поскольку к ней сводится $NP$-трудная задача о вершинном покрытии для произвольного графа. Отсюда следует вывод, что $P = NP$, в основе построения которого лежит выход за пределы целочисленных методов оптимизации.

    Просмотров за год: 7. Цитирований: 1 (РИНЦ).
  6. Свириденко А.Б.
    Прямые мультипликативные методы для разреженных матриц. Квадратичное программирование
    Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 407-420

    Рассматривается численно устойчивый прямой мультипликативный метод решения систем линейных уравнений, учитывающий разреженность матриц, представленных в упакованном виде. Преимущество метода состоит в расчете факторов Холесского для положительно определенной матрицы системы уравнений и ее решения в рамках одной процедуры, а также в возможности минимизации заполнения главных строк мультипликаторов без потери точности результатов, причем изменения в позиции очередной обрабатываемой строки матрицы не вносятся, что позволяет использовать статические форматы хранения данных. Решение системы линейных уравнений прямым мультипликативным алгоритмом — это, как и решение с помощью LU-разложения, просто другая схема реализации метода исключения Гаусса.

    Расчет факторов Холесского для положительно определенной матрицы системы и ее решение лежит в основе построения новой математической формулировки безусловной задачи квадратичного программирования и новой формы задания необходимых и достаточных условий оптимальности, которые достаточно просты и в данной работе используются для построения новой математической формулировки задачи квадратичного программирования на многогранном множестве ограничений, которая представляет собой задачу поиска минимального расстояния между началом координат и точкой границы многогранного множества ограничений средствами линейной алгебры и многомерной геометрии.

    Для определения расстояния предлагается применить известный точный метод, основанный на решении систем линейных уравнений, размерность которых не выше числа переменных целевой функции. Расстояния определяются построением перпендикуляров к граням многогранника различной размерности. Для уменьшения числа исследуемых граней предлагаемый метод предусматривает специальный порядок перебора граней. Исследованию подлежат только грани, содержащие вершину, ближайшую к точке безусловного экстремума, и видимые из этой точки. В случае наличия нескольких ближайших равноудаленных вершин исследуется грань, содержащая все эти вершины, и грани меньшей размерности, имеющие с первой гранью не менее двух общих ближайших вершин.

    Просмотров за год: 32.
  7. Грачев В.А., Найштут Ю.С.
    Задачи устойчивости тонких упругих оболочек
    Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 775-787

    В работе рассматриваются различные математические постановки, относящиеся к задаче упругой устойчивости оболочек в связи с обнаруженными в последнее время несоответствиями между экспериментальными данными и предсказаниями, основанными на теории пологих оболочек. Отмечается, что противоречия возникли в связи с появлением новых алгоритмов, позволивших уточнить вычисленные в двадцатом веке так называемые нижние критические напряжения, которые приняты техническими стандартами в качестве критерия глобальной потери устойчивости тонких пологих оболочек. Новые вычисления часто оценивают нижнее критическое напряжение близким к нулю. Следовательно, нижнее критическое напряжение не может приниматься в качестве расчетного значения для анализа потери устойчивости тонкостенной конструкции, а уравнения теории пологих оболочек должны быть заменены другими дифференциальными уравнениями. В новой теории следует также определить критерий потери устойчивости, обеспечивающий совпадение вычислений и экспериментов.

    В работе показано, что в рамках динамической нелинейной трехмерной теории упругости противоречие с новыми экспериментами может быть устранено. В качестве критерия глобальной потери устойчивости следует принять напряжение, при котором имеет место бифуркация динамических мод. Нелинейный характер исходных уравнений порождает уединенные (солитонные) волны, которым соответствуют негладкие перемещения оболочек (патерны, вмятины). Существенно, что влияния солитонов проявляются на всех этапах нагружения и резко возрастают, приближаясь к бифуркации. Солитонные решения иллюстрируются на примере тонкой цилиндрической безмоментной оболочки, трехмерный объем которой моделируется двумерной поверхностью с заданной толщиной. В статье отмечается, что волны, формирующие патерны, могут быть обнаружены (а их амплитуды определены) путем акустических или электромагнитных измерений.

    Таким образом, появляется техническая возможность снизить риск разрушения оболочек, если проводить мониторинг формы поверхности современными акустическими средствами. Статья завершается формулировкой математических проблем, требующих решения для надежной численной оценки критерия потери устойчивости тонких упругих оболочек.

    Просмотров за год: 23.
  8. Найштут Ю.С.
    О границе упругопластических тел минимального объема
    Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 503-515

    В статье изучаются упругопластические тела минимального объема. Часть границы всех рассматриваемых тел закреплена в одних и тех же точках пространства, на остальной части граничной поверхности заданы напряжения (загруженная поверхность). Форма загруженной поверхности может изменяться в пространстве, но при этом коэффициент предельной нагрузки, вычисленный в предположении, что тела заполнены упругопластической средой, не должен быть меньше фиксированного значения. Кроме того, предполагается, что все варьируемые тела содержат внутри себя некоторое эталонное многообразие ограниченного объема.

    Поставлена следующая задача: какое максимальное количество полостей (или отверстий в двумерном случае) может иметь тело (пластина) минимального объема при сформулированных выше ограничениях? Установлено, что для того, чтобы задача была математически корректно сформулирована, необходимо потребовать выполнения двух дополнительных условий: площади отверстий должны превосходить малую константу, а общая длина контуров внутренних отверстий в оптимальной фигуре должна быть минимальна среди варьируемых тел. Таким образом, в отличие от большинства работ по оптимальному проектированию упругопластических систем, когда осуществляется параметрический анализ приемлемых решений при заданной топологии, в работе проводится поиск топологического параметра связности проектируемой конструкции.

    Изучается случай, когда коэффициент предельной нагрузки для эталонного многообразия достаточно велик, а площади допустимых отверстий в варьируемых пластинах превосходят малую константу. Приводятся аргументы, подтверждающие, что в этих условиях оптимальная фигура является стержневой системой Максвелла или Мичелла. В качестве примеров представлены микрофотографии типичных для биологических систем костных тканей. Показано, что в системе Мичелла не может быть внутренних отверстий большой площади. В то же время в стержневом наборе Максвелла могут существовать значительные по площади отверстия. Приводятся достаточные условия, когда в оптимальной по объему сплошной пластинке можно образовать отверстия. Результаты допускают обобщения и на трехмерные упругопластичные конструкции.

    Статья завершается формулировкой математических проблем, вытекающих из постановки новой задачи оптимального проектирования упругопластических систем.

    Просмотров за год: 8.
  9. Аксёнов А.А., Каширин В.С., Тимушев С.Ф., Шапоренко Е.В.
    Развитие метода акустико-вихревой декомпозиции для моделирования шума автомобильных шин
    Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 979-993

    Дорожный шум является одной из ключевых проблем в обеспечении поддержания высоких стандартов охраны окружающей среды. В диапазоне скоростей от 50 до 120 км/ч шины являются основным источником шума, создаваемого движущимся автомобилем. Хорошо известно, что шум и вибрация шин генерируются либо взаимодействием протектора шины и дорожного покрытия, либо некоторыми внутренними динамическими эффектами. В данной статье рассматривается применение нового метода моделирования генерации и распространения звука при движении автомобильной шины, основанного на применении так называемой акустико-вихревой декомпозиции. Используемые в настоящее время подходы к моделированию шума автомобильных шин основаны главным образом на применении уравнения Лайтхила и аэроакустической аналогии. Аэроакустическая аналогия не является математически строгой формулировкой для вывода источника (правой части) акустического волнового уравнения при решении задачи — разделения акустической и вихревой (псевдозвуковой) мод колебаний. При разработке метода акустико-вихревой декомпозиции проводится математически строгое преобразование уравнений движения сжимаемой среды для получения неоднородного волнового уравнения относительно пульсаций статической энтальпии с источниковым членом, который зависит от поля скоростей вихревой моды. При этом колебания давления в ближнем поле представляют собой сумму акустических колебаний и псевдозвука. Таким образом, метод акустико-вихревой декомпозиции позволяет адекватно моделировать и акустическое поле, и динамические нагрузки, генерирующие вибрацию шины, обеспечивая полное решение проблемы моделирования шума шин, который является результатом ее турбулентного обтекания с генерацией вихревого звука, а также динамического нагружения и излучения шума вследствие вибрации шины. Метод впервые реализован и тестируется в программном пакете FlowVision. Приводится сравнение результатов FlowVision с расчетами, полученными с помощью пакета LMS Virtual.Lab Acoustics, и объясняется некоторое различие в спектрах акустического поля.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.