Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'напряженно-деформированное состояние':
Найдено статей: 18
  1. От редакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 853-855
    Просмотров за год: 6.
  2. От редакции
    Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 733-735
    Просмотров за год: 20.
  3. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 471-473
  4. От редакции
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1217-1219
  5. Тарасюк И.А., Кравчук А.С.
    Оценка собственных частот крутильных колебаний композиционного нелинейно вязкоупругого вала
    Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 421-430

    С целью обобщения уравнения крутильных колебаний на случай нелинейно деформируемых реологически активных валов в статье представлена методика линеаризации эффективной функции мгновенного деформирования материала. В работе рассматриваются слоистые и структурно неоднородные, в среднем изотропные валы из нелинейно вязкоупругих компонент. Методика заключается в определении аппроксимирующего модуля сдвига материала посредством минимизации среднеквадратического отклонения при приближении эффективной диаграммы мгновенного деформирования линейной функцией.

    Представленная методика позволяет в аналитическом виде произвести оценку величин частот свободных колебаний слоистых и структурно неоднородных нелинейно вязкоупругих цилиндрических стержней. Это, в свою очередь, предоставляет возможность существенно сократить ресурсы при вибрационном анализе, а также отследить изменения значений собственных частот при изменении геометрических, физико-механических и структурных параметров валов, что особенно важно на начальных этапах моделирования и проектирования. Кроме того, в работе показано, что только выраженная нелинейность эффективного уравнения состояния материала оказывает значимое влияние на частоты свободных колебаний, и в некоторых случаях нелинейностью при определении собственных частот можно пренебречь.

    В качестве уравнений состояния компонент композиционного материала в статье рассматриваются уравнения нелинейной наследственности с функциями мгновенного деформирования в виде билинейных диаграмм Прандтля. Для гомогенизации уравнений состояния слоистых цилиндрических стержней в работе применяются гипотезы Фойгта об однородности деформаций и Рейсса об однородности напряжений в объеме композиционного тела. При использовании данных предположений получены эффективные секущий и касательный модули сдвига, пределы пропорциональности, а также ядра ползучести и релаксации продольно, аксиально и поперечно-слоистых валов. Кроме того, в работе получены указанные эффективные характеристики структурно неоднородного, в среднем изотропного цилиндрического стержня с помощью ранее предложенного авторами метода гомогенизации, основанного на определении параметров деформирования материала по правилу смеси для уравнений состояния по Фойгту и Рейссу.

    Просмотров за год: 27.
  6. Грачев В.А., Найштут Ю.С.
    Деформирование жесткопластических тел с памятью формы при переменных нагрузках и температуре
    Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 63-77

    Деформирование сплошных сред из материалов с памятью формы под влиянием возрастающей нагрузки и при постоянной температуре протекает обычным для металлов идеальным упругопластическим образом. При этом величина максимальных упругих деформаций много меньше предельных пластических. Восстановление формы происходит при повышенной температуре и невысоком уровне напряжений. Феноменологически «обратное» деформирование аналогично с точностью до знака изменению формыпри активном загружении силами. Так как в неупругом процессе решающую роль играет пластическая деформация, то анализ механического поведения целесообразно провести в рамках идеальной жесткопластической модели с двумя поверхностями нагружения. В этой модели поверхностям нагружения отвечают два физических состояния материала: пластическое течение при высоких напряжениях и плавление при сравнительно невысокой температуре. Во втором параграфе формулируется задача деформирования жесткопластических сред при постоянной температуре в двух формах: в виде принципа виртуальных скоростей с условием текучести Мизеса и как требование минимальности диссипативного функционала. Доказываются равносильность принятых формулировок и существование обобщенных решений в обоих принципах. В третьем параграфе изучается жесткопластическая модель сплошной среды при изменяющейся температуре с двумя поверхностями нагружения. Для принятой модели формулируются два оптимальных принципа, связывающих внешние нагрузки и скорости перемещений точек среды как при активном нагружении, так и в процессе восстановления формыпр и нагревании. Доказано существование обобщенных скоростей для широкого класса трехмерных областей. Связь вариационных принципов и изменяющейся температуры обеспечивается включением в расчетную схему первого и второго начал термодинамики. Существенно, что в процессе доказательств используется только феноменологическое описание явления. Аустенитно-мартенситные превращения сплавов, которые часто являются основными при объяснении механического поведения материалов с памятью формы, не используются. В четвертом параграфе дано определение материалов с памятью формы как сплошных сред с двумя поверхностями нагружения, доказано существование решений в принятых ограничениях. Показана адекватность модели и опытов по деформированию материалов с памятью формы. В заключении формулируются математические задачи, которые представляются интересными в будущих исследованиях.

  7. Русяк И.Г., Тененев В.А., Суфиянов В.Г., Клюкин Д.А.
    Моделирование неравномерного горения и напряженно-деформированного состояния пороховых элементов трубчатого заряда при выстреле
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1281-1300

    Врабо те представлена физико-математическая постановка задач внутренней баллистики артиллерийского выстрела для заряда, состоящего из совокупности пороховых трубок, и их напряженно-деформированного состояния. Горение и движение пучка пороховых трубок по каналу ствола моделируются эквивалентным трубчатым зарядом всестороннего горения. Предполагается, что эквивалентная трубка движется по оси канала ствола. Скорость движения эквивалентного трубчатого заряда и его текущее положение определяются из второго закона Ньютона. При расчете параметров течения использованы двумерные осесимметричные уравнения газовой динамики, для решения которых строится осесимметричная ортогонализированная разностная сетка, адаптирующаяся к условиям течения. Для численного решения системы газодинамических уравнений применяется метод контрольного объема. Параметры газа на границах контрольных объемов определяются с использованием автомодельного решения задачи о распаде произвольного разрыва С. К. Годунова. Напряженно-деформированное состояние моделируется для отдельной горящей пороховой трубки, находящейся в поле нестационарных газодинамических параметров. Расчет газодинамических параметров выстрела осуществляется без учета деформированного состояния пороховых элементов. При данных условиях рассмотрено поведение пороховых элементов при выстреле. Для решения нестационарной задачи упругости используется метод конечных элементов с разбиением области расчета на треугольные элементы. В процессе выгорания пороховой трубки расчетная сетка на каждом временном слое динамической задачи полностью обновляется в связи с изменением границ порохового элемента за счет горения. Представлены временные зависимости параметров внутрибаллистического процесса и напряженно-деформированного состояния пороховых элементов, а также распределения основных параметров течения продуктов горения в различные моменты времени. Установлено, что трубчатые пороховые элементы в процессе выстрела испытывают существенные деформации, которые необходимо учитывать при решении основной задачи внутренней баллистики. Полученные данные дают представления об уровне эквивалентных напряжений, действующих в различных точках порохового элемента. Представленные результаты говорят об актуальности сопряженной постановки задачи газовой динамики и напряженно-деформированного состояния для зарядов, состоящих из трубчатых порохов, поскольку это позволяет по-новому подойти к проектированию трубчатых зарядов и открывает возможность определения параметров, от которых существенно зависят физика процесса горения пороха и, следовательно, динамика процесса выстрела.

  8. Колмакова Т.В.
    Метод моделирования структуры компактной костной ткани
    Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 413-420

    Представлен метод моделирования микроструктуры компактной костной ткани. Модельный образец рассматривается как совокупность структурных элементов, содержащих армирующий элемент – остеон и матрицу. Форма структурных элементов определяется расстояниями до соседних остеонов и направлениями расположения соседних остеонов. Проведен расчет напряженно-деформированного состояния модельного образца при растяжении в программном комплексе ANSYS. Результаты расчета показали, что гаверсовы каналы являются концентраторами напряжений.

    Просмотров за год: 2. Цитирований: 7 (РИНЦ).
  9. Тарасюк И.А., Кравчук А.С.
    Оценка собственных частот колебаний чистого изгиба композиционных нелинейно-упругих балок и круглых пластин
    Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 945-953

    В работе представлена методика линеаризации диаграммы растяжения-сжатия материала нелинейно деформируемых балки и круглой пластины с целью обобщения уравнений свободных колебаний чистого изгиба. В статье рассматриваются композиционные, в среднем изотропные призматические балки постоянного прямоугольного поперечного сечения и круглые пластины постоянной толщины из нелинейно-упругих компонент. Методика заключается в определении аппроксимирующего модуля Юнга материала исходя из начального напряженно-деформированного состояния балки и пластины, подверженных действию изгибающего момента.

    В статье предлагается два критерия линеаризации: равенство удельной потенциальной энергии деформации, а также минимизация среднеквадратического отклонения при приближении нелинейного уравнения состояния линейной функцией. Данный метод позволяет в аналитическом виде получить оценочное значение частоты свободных колебаний слоистых и структурно-неоднородных в среднем изотропных нелинейно-упругих балок и пластин, что предоставляет возможность существенно сократить ресурсы при вибрационном анализе и моделировании указанных элементов конструкций. Кроме того, в работе показано, что предложенные критерии линеаризации позволяют производить оценку величины собственных частот с одинаковой точностью.

    Поскольку в общем случае даже изотропные материалы проявляют разную сопротивляемость растяжению и сжатию, в качестве кривых деформирования компонент композиционного материала в работе впервые рассматриваются кусочно-линейные диаграммы Прандтля с различающимися пределами пропорциональности и касательными модулями Юнга при растяжении и сжатии. В качестве параметров диа- граммы деформирования слоистых материалов рассматриваются эффективные характеристики по Фойгту при гипотезе об однородности деформаций (для продольно-слоистой структуры материла), по Рейссу при гипотезе об однородности напряжений (для поперечно-слоистой балки и аксиально-слоистой пластины). Кроме того, для структурно-неоднородного в среднем изотропного материала приведены эффективные модули Юнга и пределы пропорциональности, полученные с помощью ранее предложенного авторами метода гомогенизации. В качестве примера приведен расчет собственных частот колебаний двухфазных балок в зависимости от концентраций компонент их материала.

    Просмотров за год: 14.
  10. Предложена конечно-элементная модель биомеханической системы адекватной сложности (с пространственными, оболочечными и балочными элементами), состоящая из имитатора большеберцовой кости с регенерирующей тканью в месте перелома и аппарата Илизарова. Модель позволяет задавать ортотропные упругие свойства материалов имитатора кости (областей компактной и спонгиозной тканей), вводить неоднородные жесткостные свойства регенерирующей ткани в зоне места перелома, изменять базовые геометрические и механические характеристики модели и параметры конечно-элементной сетки, а также задавать различные внешние воздействия, связанные с нагрузкой на имитатор кости и компрессией или дистракцией между репонирующими кольцами аппарата Илизарова.

    С использованием разработанных программ на командном языке APDL в конечноэлементном комплексе ANSYS проведены расчеты напряженно-деформированного состояния в зоне перелома при варьировании статических сжимающих нагрузок на имитатор кости, величин перемещений репонирующих колец аппарата Илизарова и жесткостных свойств соединительной ткани костной мозоли на различных этапах сращения перелома (гелеобразной, хрящевой, спонгиозной и нормальной костных тканей). Представленная методология и разработанные программы позволяют проводить оценки допустимых величин внешних нагрузок на костьи величин перемещений репонирующих колец аппарата Илизарова на различных этапах регенерации кости в процессе заживления, исходя из априорно задаваемых критериев допуска на максимальные характеристики напряжений в костной мозоли. Предлагаемые подходы могут бытьиспо льзованы в клинических условиях при планировании, реализации и контроле силовых режимов работы при чрескостном остеосинтезе аппаратом Илизарова.

    Просмотров за год: 3.
Страницы: следующая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.