Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'модели с индивидуальной динамикой':
Найдено статей: 15
  1. Ухманьски Я.З.
    Об алгоритмической сущности биологии
    Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 641-652

    Степень математизации физики чрезвычайно высока, и это позволяет понимать законы природы путем анализа математических структур, которые их описывают. Но это верно лишь для физических законов. Напротив, степень математизации биологии весьма невелика, и все попытки ее математизации ограничиваются применением тех математических методов, которые употребляются для описания физических систем. Такой подход, возможно, ошибочен, поскольку биологическим системам придаются атрибуты, которых у них нет. Некоторые думают, что нам нужны новые математические методы, которые соответствуют нуждам биологии и не известны физике. Однако, рассматривая специфику биологических систем, мы должны говорить об их алгоритмичности, а не об их математичности. В качестве примеров алгоритмического подхода к биологическим системам можно указать на так называемые индивидуальные модели (individual-based models), которые в экологии употребляются для описания динамики популяций, или на фрактальные модели, описывающие геометрическую структуру растений.

  2. Аптуков А.М., Брацун Д.А., Люшнин А.В.
    Моделирование поведения паникующей толпы в многоуровневом разветвленном помещении
    Компьютерные исследования и моделирование, 2013, т. 5, № 3, с. 491-508

    Предлагается модель коллективного поведения толпы, покидающей замкнутое помещение. Модель основывается на методах молекулярной динамики, учитывающей действие как физических, так и социально-психологических сил. Впервые предлагается алгоритм расчета для сложно разветвленных помещений. Для этого у каждого индивида формируется план выхода из помещения, который стохастически трансформируется в процессе эволюции. Алгоритм включает в себя предварительное разбиение пространства на комнаты, выход из которых индивиды выбирают в соответствии со своим распределением вероятности. Модель калибруется с помощью данных, появившихся в результате пожара в ночном клубе «Хромая лошадь» (Пермь, 2009 г.) Алгоритм оформлен как Java-программа конечного пользователя. Предполагается, что программа может помочь тестировать здания на предмет их безопасности для людей.

    Просмотров за год: 7. Цитирований: 10 (РИНЦ).
  3. Шумов В.В.
    Анализ социально-информационного влияния на примере войн США в Корее, Вьетнаме и Ираке
    Компьютерные исследования и моделирование, 2014, т. 6, № 1, с. 167-184

    В первом разделе работы предложено определение функции представления (восприятия) о показателях, являющихся компонентами субъективной картины мира индивидов. Используя основной психофизический закон в форме С. Стивенса и опираясь на гипотезы социализации, рациональности, индивидуального выбора, комплексности информационных воздействий, динамики представлений и восприятий, доступности, получены формальные зависимости, позволяющие вычислять функции представления (восприятия) для показателей вероятностного (известна функция распределения или субъективная вероятность) и интервального типов. Во втором и третьем разделах выполнена оценка параметров функции представления по данным опросов населения США, связанных с войной в Корее, во Вьетнаме и в Ираке.

    Просмотров за год: 2. Цитирований: 3 (РИНЦ).
  4. Шиняева Т.С.
    Динамика активности в виртуальных сетях: сравнение модели распространения эпидемии и модели возбудимой среды
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1485-1499

    Модели распространения эпидемий широко применяются для моделирования социальной активности, например распространения слухов или паники. С другой стороны, для моделирования распространения активности традиционно используются модели возбудимых сред. Проведено моделирование распространения активности в виртуальном сообществе в рамках двух моделей: модели распространения эпидемий SIRS и модели возбудимой среды Винера – Розенблюта. Использованы сетевые версии этих моделей. Сеть предполагалась неоднородной: каждый элемент сети обладает индивидуальным набором характеристик, что соответствует различным психологическим типам членов сообщества. Структура виртуальной сети полагается соответствующей безмасштабной сети. Моделирование проводилось на безмасштабных сетях с различными значениями средней степени вершин. Дополнительно рассмотрен частный случай — полный граф, соответствующий узкой профессиональной группе, когда каждый член группы взаимодействует с каждым. Участники виртуального сообщества могут находиться в одном из трех состояний: 1) потенциальная готовность к восприятию определенной информации; 2) активный интерес к этой информации; 3) полное безразличие к этой информации. Эти состояния вполне соответствуют состояниям, которые обычно используют в моделях распространения эпидемий: 1) восприимчивый к ин- фекции субъект, 2) больной, 3) переболевший и более невосприимчивый к инфекции в силу приобретенного иммунитета или смерти от болезни. Сопоставление двух моделей показало их близость как на уровне формулировки основных положений, так и на уровне возможных режимов. Распространение активности по сети аналогично распространению инфекционных заболеваний. Показано, что активность в виртуальной сети может испытывать колебания или затухать.

  5. Говорков Д.А., Новиков В.П., Соловьёв И.Г., Цибульский В.Р.
    Интервальный анализ динамики растительного покрова
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1191-1205

    В развитие ранее полученного результата по моделированию динамики растительного покрова, вследствие изменчивости температурного фона, представлена новая схема интервального анализа динамики флористических образов формаций в случае, когда параметр скорости реагирования модели динамики каждого учетного вида растения задан интервалом разброса своих возможных значений. Желаемая в фундаментальных исследованиях детализация описания функциональных параметров макромоделей биоразнообразия, учитывающая сущностные причины наблюдаемых эволюционных процессов, может оказаться проблемной задачей. Использование более надежных интервальных оценок вариабельности функциональных параметров «обходит» проблему неопределенности в вопросах первичного оценивания эволюции фиторесурсного потенциала осваиваемых подконтрольных территорий. Полученные решения сохраняют не только качественную картину динамики видового разнообразия, но и дают строгую, в рамках исходных предположений, количественную оценку меры присутствия каждого вида растения. Практическая значимость схем двустороннего оценивания на основе конструирования уравнений для верхних и нижних границ траекторий разброса решений зависит от условий и меры пропорционального соответствия интервалов разбросов исходных параметров с интервалами разбросов решений. Для динамических систем желаемая пропорциональность далеко не всегда обеспечивается. Приведенные примеры демонстрирует приемлемую точность интервального оценивания эволюционных процессов. Важно заметить, что конструкции оценочных уравнений порождают исчезающие интервалы разбросов решений для квазипостоянных температурных возмущений системы. Иными словами, траектории стационарных температурных состояний растительного покрова предложенной схемой интервального оценивания не огрубляется. Строгость результата интервального оценивания видового состава растительного покрова формаций может стать определяющим фактором при выборе метода в задачах анализа динамики видового разнообразия и растительного потенциала территориальных систем ресурсно-экологического мониторинга. Возможности предложенного подхода иллюстрируются геоинформационными образами вычислительного анализа динамики растительного покрова полуострова Ямал и графиками ретроспективного анализа флористической изменчивости формаций ландшафтно-литологической группы «Верховые» по данным вариации летнего температурного фона метеостанции г. Салехарда от 2010 до 1935 года. Разработанные показатели флористической изменчивости и приведенные графики характеризуют динамику видового разнообразия, как в среднем, так и индивидуально, в виде интервалов возможных состояний по каждому учетному виду растения.

Страницы: предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.