Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
- Просмотров за год: 36.
- Просмотров за год: 27.
-
Об устойчивости гравитационной системы многих тел
Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 487-511В работе под гравитационной системой понимается множество точечных тел, взаимодействующих согласно закону притяжения Ньютона и имеющих отрицательное значение полной энергии. Обсуждается вопрос об устойчивости (о неустойчивости) гравитационной системы общего положения путем прямого вычислительного эксперимента. Под гравитационной системой общего положения понимается система, у которой массы, начальные позиции и скорости тел выбираются случайными из заданных диапазонов. Для проведения вычислительного эксперимента разработан новый метод численного решения обыкновенных дифференциальных уравнений на больших интервалах времени. Предложенный метод позволил, с одной стороны, обеспечить выполнение всех законов сохранения путем подходящей коррекции решений, с другой — использовать стандартные методы численного решения систем дифференциальных уравнений невысокого порядка аппроксимации. В рамках указанного метода траектория движения гравитационной системы в фазовом пространстве собирается из частей, длительность каждой из которых может быть макроскопической. Построенная траектория, вообще говоря, является разрывной, а точки стыковки отдельных кусков траектории выступают как точки ветвления. В связи с последним обстоятельством предложенный метод отчасти можно отнести к классу методов Монте-Карло. Общий вывод проведенной серии вычислительных экспериментов показал, что гравитационные системы общего положения с числом тел 3 и более, вообще говоря, неустойчивы. В рамках предложенного метода специально рассмотрены частные случаи равенства нулю момента импульса гравитационной системы с числом тел 3 и более, а также задача движения двух тел. Отдельно рассмотрен случай численного моделирования динамики во времени Солнечной системы. С позиций вычислительного эксперимента на базе аналитических методов, а также прямых численных методов высокого порядка аппроксимации (10 и выше) устойчивость Солнечной системы ранее продемонстрирована на интервале в пять и более миллиардов лет. В силу ограничений на имеющиеся вычислительные ресурсы устойчивость динамики планет Солнечной системы в рамках использования предлагаемого метода удалось подтвердить на срок десять миллионов лет. С помощью вычислительного эксперимента рассмотрен также один из возможных сценариев распада Солнечной системы.
-
Моделирование и анализ основных характеристик внутренней трековой системы многофункционального детектора частиц MPD методом Монте-Карло
Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 87-94Просмотров за год: 28.В настоящее время в ОИЯИ (Дубна) осуществляется строительство ускорительного комплекса NICA для проведения экспериментов по изучению взаимодействий релятивистских ядер и поляризованных частиц (протонов и дейтронов). Одна из создаваемых экспериментальных установок MPD (MultiPurpose Detector) рассчитана на изучение ядро-ядерных, протон-ядерных и протон-протонных взаимодействий. В связи с планами развития установки MPD рассматривается возможность создания внутреннего трекера с использованием кремниевых пиксельных детекторов нового поколения. Предполагается, что такой детектор позволит значительно повысить исследовательский потенциал эксперимента как для ядро-ядерных (за счет высокого пространственного разрешения вблизи области пересечения пучков), так и для протон-протонных (за счет высокого быстродействия) взаимодействий.
В представленной работе изучаются основные характеристики такого трекера с использованием данных по протон-протонным взаимодействиям, полученных с помощью моделирования методом Монте-Карло. В частности, оцениваются возможности детектора по восстановлению вершин распада короткоживущих частиц и по выделению редких событий таких распадов среди продуктов гораздо более вероятных «обычных» взаимодействий. Также затрагивается проблема разделения вершин взаимодействий для восстановления наложенных событий при высокой светимости ускорителя и способность детектора проводить быструю селекцию редких событий (триггер). Полученные результаты могут быть использованы для обоснования необходимости создания данного детектора и развития системы триггера высокого уровня, основанного в том числе на методах машинного обучения.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"