Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'моделирование движения':
Найдено статей: 126
  1. Софронова Е.А., Дивеев А.И., Казарян Д.Э., Константинов С.В., Дарьина А.Н., Селиверстов Я.А., Баскин Л.А.
    Использование реальных данных из нескольких источников для оптимизации транспортных потоков в пакете CTraf
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 147-159

    Рассмотрена задача оптимального управления транспортным потоком в сети городских дорог. Управление осуществляется изменением длительностей рабочих фаз светофоров на регулируемых перекрестках. Приведено описание разработанной системы управления. В системе управления предусмотрено использование трех видов управлений: программного, с обратной связью и ручного. При управлении с обратной связью для определения количественных характеристик транспортного потока используются детекторы дорожной инфраструктуры, видеокамеры, индуктивные петлевые и радиолокационные датчики. Обработка сигналов с детекторов позволяет определить состояние транспортного потока в каждый текущий момент времени. Для определения моментов переключения рабочих фаз светофоров количественные характеристики транспортных потоков поступают в математическую модель транспортного потока, реализованную в вычислительной среде системы автоматического управления транспортными потоками. Модель представляет собой систему конечно-разностных рекуррентных уравнений и описывает изменение транспортного потока на каждом участке дороги в каждый такт времени на основе рассчитанных данных по характеристикам транспортного потока в сети, пропускным способностям маневров и распределению потока на перекрестках с альтернативными направлениями движения. Модель обладает свойствами масштабирования и агрегирования. Структура модели зависит от структуры графа управляемой сети дорог, а количество узлов в графе равно количеству рассматриваемых участков дорог сети. Моделирование изменений транспортного потока в режиме реального времени позволяет оптимально определять длительности рабочих фаз светофоров и обеспечивать управление транспортным потоком с обратной связью по его текущему состоянию. В работе рассмотрена система автоматического сбора и обработки данных, поступающих в модель. Для моделирования состояний транспортного потока в сети и решения задачи оптимального управления транспортным потоком разработан программный комплекс CTraf, краткое описание которого представлено в работе. Приведен пример решения задачи оптимального управления транспортным потокам в сети дорог города Москва на основе реальных данных.

  2. Юмаганов А.С., Агафонов А.А., Мясников В.В.
    Адаптивное управление сигналами светофоров на основе обучения с подкреплением, инвариантное к конфигурации светофорного объекта
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1253-1269

    В работе представлен метод адаптивного управления сигналами светофоров, инвариантный к конфигурации светофорного объекта. Предложенный метод использует одну модель нейронной сети для управления светофорами различных конфигураций, отличающихся как по числу контролируемых полос движения, так и по используемому набору фаз. Для описания пространства состояний используется как динамическая информация о состоянии транспортного потока, так и статические данные о конфигурации контролируемого перекрестка. Для повышения скорости обучения модели предлагается использовать эксперта, предоставляющего дополнительные данные для обучения модели. В качестве эксперта используется метод адаптивного управления, основанный на максимизации взвешенного потока транспортных средств через перекресток. Экспериментальные исследования разработанного метода, проведенные в системе микроскопического моделирования движения транспортных средств, подтвердили его работоспособность и эффективность. Была показана возможность применения разработанного метода в сценарии моделирования, не используемом в процессе обучения. Представлено сравнение предложенного метода с другими известными решениями задачи управления светофорным объектом, в том числе с методом, используемым в качестве эксперта. В большинстве сценариев разработанный метод показал лучший результат по критериям среднего времени движения и среднего времени ожидания. Преимущество над методом, используемым в качестве эксперта, в зависимости от исследуемого сценария составило от 2% до 12% по критерию среднего времени ожидания транспортных средств и от 1% до 7% по критерию среднего времени движения.

  3. Якушевич Л.В., Балашова В.Н., Закирьянов Ф.К.
    Особенности движения кинков ДНК при асинхронном включении/выключении постоянного и периодического полей
    Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 545-558

    Исследование влияния внешних полей на живые системы — одно их наиболее интересных и быстро развивающихся направлений современной биофизики. Однако механизмы такого воздействия до сих пор не совсем ясны. Один из подходов к изучению этого вопроса связывают с моделированием взаимодействия внешних полей с внутренней подвижностью биологических объектов. В настоящей работе этот подход применяется для исследования влияния внешних полей на движение локальных конформационных возмущений — кинков в молекуле ДНК. Понимая и учитывая, что в целом такая задача тесно связана с задачей о механизмах регуляции процессов жизнедеятельности клеток и клеточных систем, мы поставили задачу — исследовать физические механизмы, регулирующие движение кинков, а также ответить на вопрос, могут ли постоянные и периодические поля выступать в роли регуляторов этого движения. В работе рассматривается самый общий случай, когда постоянные и периодические поля включаются и выключаются асинхронно. Детально исследованы три варианта асинхронного включения/выключения. В первом варианте интервалы (или диапазоны) действия постоянного и периодического полей не перекрываются, во втором — перекрываются, а третьем — интервалы вложены друг в друга. Расчеты выполнялись для последовательности плазмиды pTTQ18. Движение кинков моделировалось уравнением МакЛафлина–Скотта, а коэффициенты этого уравнения рассчитывались в квазиоднородном приближении. Численные эксперименты показали, что постоянные и периодические поля оказывают существенное влияние на характер движения кинка и регулируют его. Так, включение постоянного поля приводит к быстрому увеличению скорости кинка и установлению стационарной скорости движения, а включение периодического поля приводит к установившимся колебаниям кинка с частотой внешнего периодического поля. Показано, что поведение кинка зависит от взаимного расположения диапазонов действия внешних полей. Причем, как оказалось, события, происходящие в одном диапазоне, могут оказывать влияние на события в другом временном диапазоне даже в том случае, когда диапазоны расположены достаточно далеко друг от друга. Показано, что перекрывание диапазонов действия постоянного и периодического полей приводит к значительному увеличению пути, проходимому кинком до полной остановки. Максимальный рост пути наблюдается в случае вложенных друг в друга диапазонов. В заключении обсуждается вопрос о том, как полученные модельные результаты могут быть связаны с важнейшей задачей биологии — задачей о механизмах регуляции процессов жизнедеятельности клеток и клеточных систем.

    Просмотров за год: 29. Цитирований: 1 (РИНЦ).
  4. Аксёнов А.А., Похилко В.И., Моряк А.П.
    Использование приповерхностных сеток для численного моделирования вязкостных явлений в задачах гидродинамики судна
    Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 995-1008

    Численное моделирование обтекания судового корпуса, работы гребного винта, а также решение других задач гидродинамики судна в адаптивных локально-измельченных сетках на основе прямоугольных начальных сеток обладают рядом преимуществ в области подготовки расчетов и являются весьма удобными для проведения экспресс-анализа. Однако при необходимости существенного уточнения моделирования вязкостных явлений возникает ряд сложностей, связанных с резким ростом числа неизвестных при адаптации расчетной сетки до высоких уровней, которая необходима для разрешения пограничных слоев, и снижением шага по времени в расчетах со свободной поверхностью из-за уменьшения пролетного времени проадаптированных ячеек. Для ухода от этих недостатков предлагается использовать для разрешения пограничных слоев дополнительные приповерхностные сетки, представляющие собой одномерные адаптации ближайших к стенке слоев расчетных ячеек основной сетки. Приповерхностные сетки являются дополнительными (или химерными), их объем не вычитается из объема основной сетки. Уравнения движения жидкости интегрируются в обеих сетках одновременно, а стыковка решений происходит по специальному алгоритму. В задаче моделирования обтекания судового корпуса приповерхностные сетки могут обеспечивать нормальное функционирование низкорейнольдсовых моделей турбулентности, что существенно уточняет характеристики потока в пограничном слое у гладких поверхностей при их безотрывном обтекании. При наличии на поверхности корпуса отрывов потока или других сложных явлений можно делить поверхность корпуса на участки и использовать приповерхностные сетки только на участках с простым обтеканием, что тем не менее обеспечивает большую экономию ресурсов. В задаче моделирования работы гребного винта приповерхностные сетки могут обеспечивать отказ от пристеночных функций на поверхности лопастей, что ведет к значительному уточнению получаемых на них гидродинамических сил. Путем изменения числа и конфигурации слоев приповерхностных ячеек можно варьировать разрешение в пограничном слое без изменения основной сетки, что делает приповерхностные сетки удобным инструментом исследования масштабных эффектов в рассмотренных задачах.

  5. Сухов Е.А., Чекина Е.А.
    Программный комплекс для численного моделирования движения систем многих тел
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 161-174

    В настоящей работе решается задача численного моделирования движения механических систем, состоящих из твердых тел с произвольными массово-инерционными характеристиками. Предполагается, что рассматриваемые системы являются пространственными и могут содержать замкнутые кинематические цепи. Движение системы происходит под действием внешних и внутренних сил достаточно произвольного вида.

    Моделирование движения механической системы производится полностью автоматически при помощи вычислительного алгоритма, состоящего из трех основных этапов. На первом этапе на основе задаваемых пользователем начальных данных выполняется построение графа механической системы, представляющего ее иерархическую структуру. На втором этапе происходит вывод дифференциально-алгебраических уравнений движения системы. Для вывода уравнений движения используется так называемый метод шарнирных координат. Отличительной чертой данного метода является сравнительно небольшое количество получаемых уравнений движения, что позволяет повысить производительность вычислений. На третьем этапе выполняются численное интегрирование уравнений движения и вывод результатов моделирования.

    Указанный алгоритм реализован в виде программного комплекса, содержащего систему символьной математики, библиотеку графов, механический решатель, библиотеку численных методов и пользовательский интерфейс.

  6. Чеснокова О.И., Мелких А.В.
    Имитационное моделирование направленного движения в условиях градиента освещенности
    Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 401-406

    Создана имитационная многоагентная модель искусственной жизни. Рассмотрены конкурентные преимущества направленного движения и различные стратегии его использования в популяции простейших организмов в условиях градиента освещенности. Получены результаты, согласующиеся с теорией r-K отбора. Поведение агентов в искусственной экосистеме качественно соответствует наблюдаемому в природе.

    Просмотров за год: 5.
  7. Жаркова В.В., Щеляев А.Е., Фишер Ю.В.
    Численное моделирование внешнего обтекания спортсмена
    Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 331-344

    В работе описывается численное моделирование процесса внешнего обтекания подвижного спортсмена с целью определения его интегральных характеристик при различных режимах набегающего потока и режимах его движения. Численное моделирование выполнено с помощью программного комплекса вычислительной гидродинамики FlowVision, построенного на решении набора уравнений, описывающих движение жидкости и/или газа в расчетной области, в том числе уравнений сохранения массы, импульса и энергии, уравнений состояния, уравнений моделей турбулентности. Также учитываются подвижные границы расчетной области, изменяющаяся геометрическая форма которых моделирует фазы движения спортсмена, при прохождении трассы. Решение системы уравнений выполняется на декартовой сетке с локальной адаптацией в области высоких градиентов давлений или сложной геометрической формы границы расчетной области. Решение уравнений выполняется с помощью метода конечных объемов, с использованием расщепления по физическим процессам. Разработанная методика была апробирована на примере спортсменов, совершающих прыжки на лыжах с трамплина, в рамках подготовки к Олимпиаде в Сочи в 2014 году. Сравнение результатов численного и натурного эксперимента показало хорошую корреляцию. Технология моделирования состоит из следующих этапов:

    1) разработка постановки задачи внешнего обтекания спортсмена в обращенной постановке, где неподвижный объект исследования обтекается набегающим потоком, со скоростью, равной скорости движения объекта;

    2) разработка технологии изменения геометрической формы границы расчетной области в зависимости от фазы движения спортсмена; разработка методики численного моделирования, включающей в себя определение дискретизации по времени и пространству за счет выбора шага интегрирования и измельчения объемной расчетной сетки;

    3) проведение серии расчетов с использованием геометрических и динамических данных спортсмена из сборной команды.

    Описанная методика универсальна и применима для любых других видов спорта, биомеханических, природных и подобных им технических объектов.

    Просмотров за год: 29.
  8. Русяк И.Г., Тененев В.А.
    Моделирование баллистики артиллерийского выстрела с учетом пространственного распределения параметров и противодавления
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1123-1147

    В работе приводится сравнительный анализ результатов, полученных при различных подходах к моделированию процесса артиллерийского выстрела. В этой связи дана постановка основной задачи внутренней баллистики и ее частного случая задачи Лагранжа в осредненных параметрах, где в рамках допущений термодинамического подхода впервые учтены распределения давления и скорости газа по заснарядному пространству для канала переменного сечения. Представлена также постановка задачи Лагранжа в рамках газодинамического подхода, учитывающего пространственное (одномерное и двумерное осесимметричное) изменение характеристик внутрибаллистического процесса. Для численного решения системы газодинамических уравнений Эйлера применяется метод контрольного объема. Параметры газа на границах контрольных объемов опреде- ляются с использованием автомодельного решения задачи о распаде произвольного разрыва. На базе метода Годунова предложена модификация схемы Ошера, позволяющая реализовать алгоритм численного расчета со вторым порядком точности по координате и времени. Проведено сравнение решений, полученных в рамках термодинамического и газодинамического подходов, при различных параметрах заряжания. Изучено влияние массы снаряда и уширения камеры на распределение внутрибаллистических параметров выстрела и динамику движения снаряда. Показано, что термодинамический подход, по сравнению с газодинамическим подходом, приводит к систематическому завышению расчетной дульной скорости снаряда во всем исследованном диапазоне изменения параметров, при этом различие по дульной скорости может достигать 35 %. В то же время расхождение результатов, полученных в рамках одномерной и двумерной газодинамических моделей выстрела в этом же диапазоне изменения параметров, составляет не более 1.3 %.

    Дана пространственная газодинамическая постановка задачи о противодавлении, описывающая изменение давления перед ускоряющимся снарядом при его движении по каналу ствола. Показано, что учет формы передней части снаряда в рамках двумерной осесимметричной постановки задачи приводит к существенному различию полей давления за фронтом ударной волны по сравнению с решением в рамках одномерной постановки задачи, где форму передней части снаряда учесть невозможно. Сделан вывод, что это может существенно повлиять на результаты моделирования баллистики выстрела при высоких скоростях метания.

  9. Аронов И.З., Максимова О.В.
    Моделирование достижения консенсуса в условиях доминирования в социальной группе
    Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 1067-1078

    Во многих социальных группах, например в технических комитетах по стандартизации, на между- народном, региональном и национальных уровнях, в европейских общинах, управляющих экопоселени- ями, социальных общественных движениях (occupy), международных организациях, принятие решений опирается на консенсус членов группы. Вместо голосования, когда большинство получает победу над меньшинством, консенсус позволяет найти решение, которое каждый член группы поддерживает или как минимум считает приемлемым. Такой подход гарантирует, что будут учтены все мнения членов группы, их идеи и потребности. При этом отмечается, что достижение консенсуса требует значительного време- ни, поскольку необходимо обеспечить согласие внутри группы независимо от ее размера. Было показано, что в некоторых ситуациях число итераций (согласований, переговоров) весьма значительно. Более того, в процессе принятия решений всегда присутствует риск блокировки решения меньшинством в группе, что не просто затягивает время принятия решения, а делает его невозможным. Как правило, таким мень- шинством выступает один или два одиозных человека в группе. При этом в дискуссии такой член группы старается доминировать, оставаясь всегда при своем мнении, игнорируя позицию других коллег. Это при- водит к затягиванию процесса принятия решений, с одной стороны, и ухудшению качества консенсуса — с другой, поскольку приходится учитывать только мнение доминирующего члена группы. Для выхода из кризиса в этой ситуации было предложено принимать решение по принципу «консенсус минус один» или «консенсус минус два», то есть не учитывать мнение одного или двух одиозных членов группы.

    В статье на основе моделирования консенсуса с использованием модели регулярных марковских цепей исследуется вопрос, насколько сокращается время принятия решения по правилу «консенсус минус один», когда не учитывается позиция доминирующего члена группы.

    Общий вывод, который вытекает из результатов моделирования, сводится к тому, что эмпирическое правило принятия решений по принципу «консенсус минус один» имеет соответствующее математиче- ское обоснование. Результаты моделирования показали, что применение правила «консенсус минус один» позволяет сократить время достижения консенсуса в группе на 76–95 %, что важно для практики.

    Среднее число согласований гиперболически зависит от средней авторитарности членов группы (без учета авторитарного), что означает возможность затягивания процесса согласования при высоких значениях авторитарности членов группы.

  10. Тишкин В.Ф., Трапезникова М.А., Чечина А.А., Чурбанова Н.Г.
    Моделирование транспортных потоков на основе квазигазодинамического подхода и теории клеточных автоматов с использованием суперкомпьютеров
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 175-194

    Целью исследования являются моделирование динамики автотранспортных потоков на транспортных сетях мегаполисов и систематизация современного состояния дел в этой области. Во введении указывается, что на первый план выходит развитие интеллектуальных транспортных систем, которые становятся неотъемлемой частью современных транспортных технологий. Основным ядром таких систем являются адекватные математические модели, максимально приближенные к реальности. Отмечается, что в связи с большим объемом вычислений необходимо использование суперкомпьютеров, следовательно, создание специальных пар аллельных алгоритмов. В начале статьи приводится современная классификация моделей, обсуждаются отличительные особенности каждого класса со ссылками на соответствующие примеры. Далее основное внимание уделяется созданным авторами статьи разработкам в области как макроскопического, так и микроскопического моделирования и определению места этих разработок в приведенной выше классификации. Макроскопическая модель основана на приближении сплошной среды и использует идеологию квазигазодинамических систем уравнений. Указаны ее достоинства по сравнению с существующими моделями этого класса. Система уравнений модели представлена как в одномерном варианте, но с возможностью исследования многополосного движения, так и в двумерном варианте, с введением понятия боковой скорости, то есть скорости перестроения из полосы в полосу. Второй вариант позволяет проводить вычисления в расчетной области, соответствующей реальной геометрии дороги. Представлены тестовые расчеты движения по дороге с локальным расширением и по дороге с системой светофоров с различными светофорными режимами. Расчеты позволили в первом случае сделать интересные выводы о влиянии расширения на пропускную способность дороги в целом, а во втором случае — выбрать оптимальный режим для получения эффекта «зеленой волны». Микроскопическая модель основана на теории клеточных автоматов и однополосной модели Нагеля – Шрекенберга и обобщена авторами на случай многополосного движения. В модели реализованы различные поведенческие стратегии водителей. В качестве теста моделируется движение на реальном участке транспортной сети в центре г. Москвы. Причем для грамотного прохождения транспортных узлов сети в соответствии с правилами движения реализованы специальные алгоритмы, адаптированные для параллельных вычислений. Тестовые расчеты выполнены на суперкомпьютере К-100 ЦКП ИПМ им. М. В. Келдыша РАН.

Страницы: « первая предыдущая следующая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.